MICROANGIOPATIE TROMBOTICHE: PATOGENESI/TERAPIA

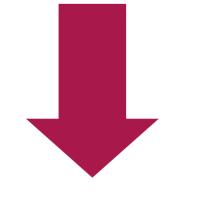
PERUGIA, 29 SETTEMBRE 2016

PERUGIA, 29 SETTEMBRE 2016

Le microangiopatie trombotiche in gravidanza

Sandro Gerli

Clinica Ostetrica e Ginecologica Centro di Medicina della Riproduzione Università di Perugia


TMA - DEFINITION

Despite their extraordinary diversity, these collection of disorders are always defined by the presence of:

- > Pregnancy
- > Thrombocytopenia
- Microangiopathic haemolytic anaemia (MAHA)
- Small vessel thrombosis
- Organ injury

PREGNANCY

Despite TMA syndromes do not recognize a definite causative effect, pregnancy is a physiological event that MAY represents a favorable ground for the establishment of these syndromes

Anticoagulant

Procoagulant

PREGNANCY IS A HYPERCOAGULABLE STATE

Fibrinogen Increased from 2.5 g/l to 5 g/l

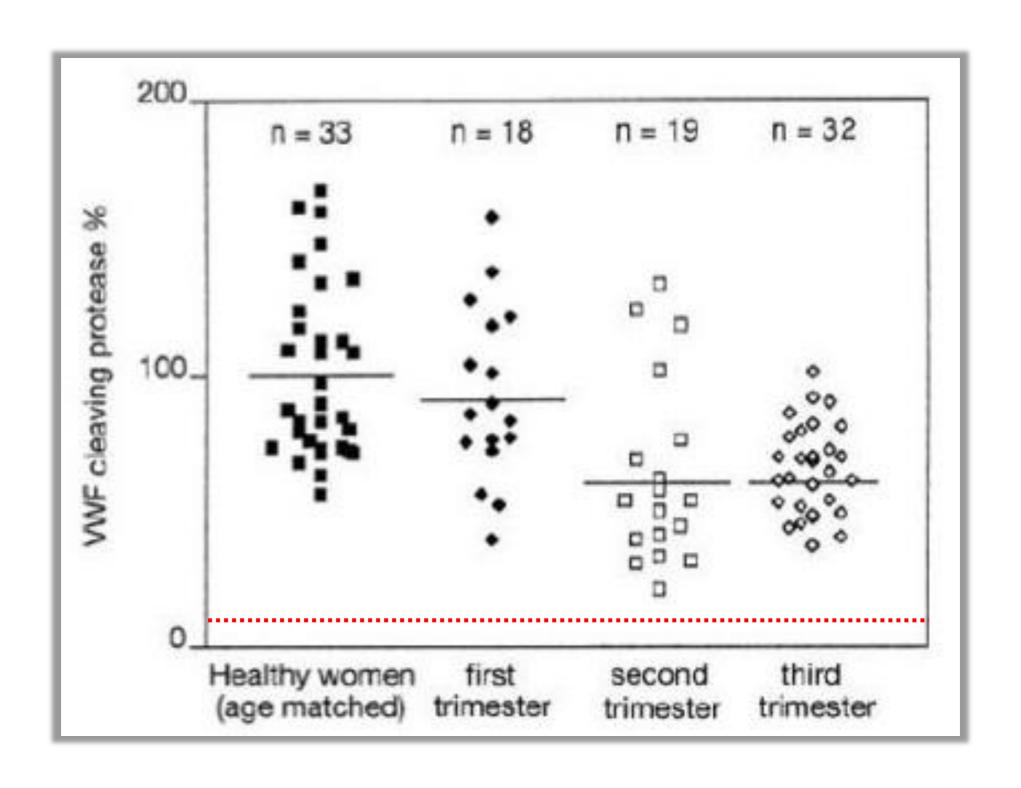
Factor II Slightly increased

Factor V Slightly increased

Factor VII Increased 10 folds

Factor VIII Increased 2 folds

Factor XI - X Increased


Factor XI Decreased by 70%

Factor XII Increased by 40%

Factor XIII Decreased by 40%

and to make things worse...

Changes in ADAMTS13 during pregnancy

Perché un "equilibrio" pro-trombotico si trasforma in una situazione favorevole alla formazione di microtrombi con trombocitopenia secondaria da attivazione piastrinica?

TMA IN PREGNANCY

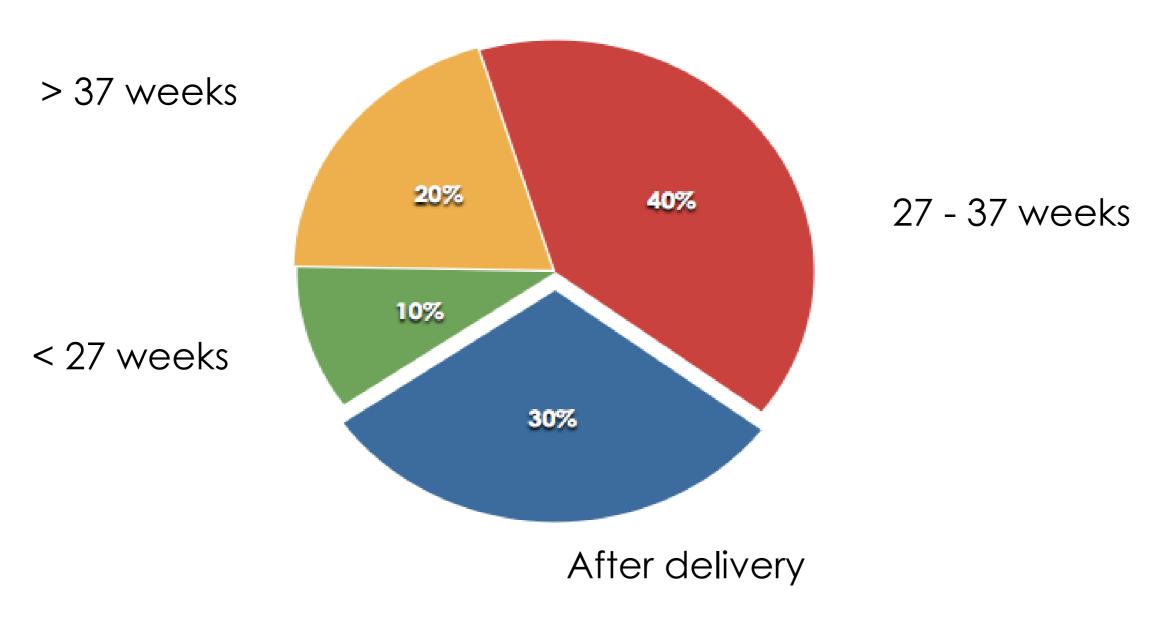
Pre-eclampsia/ HELLP

p-TTP

p-aHUS

In 1982 Weistein described a unique group of obstetric patients with:

- > Hemolysis (H)
- Elevated liver enzymes (EL)
- > Low platelet count (LP)


epidemiology

- > occurs in 0.2 0.8% of pregnancies
- in 70 80% of cases it coexists with preeclampsia...
- ... but it occurs in 15% in women with preeclampsia
- more frequent in older, multiparous, caucasian women
- risk of recurrence in a subsequent pregnancy is 19 27%

(55% of PE risk if HELLP < 28 sett)

Am College of Obstetricians and Gynecologists: Hypertension in Pregnancy. 1996 Sibai – Obstet and Gynecol 2004 Weinstein - Am J Obstet & Gynecol 1982 Liszewski MK et al. Hematology Am Soc Hem Educ Program 2011:9-14

epidemiology

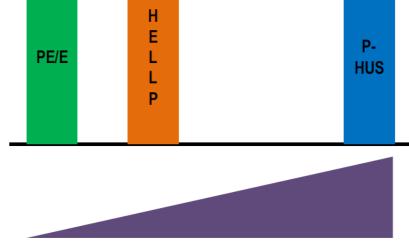
Haram,: The HELLP syndrome clinical issues and management, BMC pregnancy childbirth, 2009

PATHOGENETIC MECHANISMS

Gene variant	HELLP compared to	HELLP (n)	OR (95% CI), p	Effect
Glucocorticoid receptor gene (GCCR), Bell SNP polymorphisms Toll-like receptor 4 gene (TLR4), D299G T3991	Healthy pregnant Severe PE Healthy pregnant PE	17 177	2.89 (1.45–5.74) p = 0.004 2.56 (1.26–5.23) p = 0.013 4.7 (2.0–1.9) 2.3 (1.3–4.3)	Altered immune sensitivity and glucocorticoid sensitivity Uncontrolled or harmful inflammation, Ineffective immunity
polymorphisms VEGF gene (VEGFA), C-460T G+405C polymorphisms	Healthy pregnant Healthy pregnant	16	3.03 (1.51–6.08) 3.67 (1.05–6.08)	Angiogenesis and vasculogenesis, arterial muscular relaxation
FAS (TNFRSF6) gene, homozygous polymorphism in A-670G	Healthy pregnant	81	2.7 (1.2-5.9)	Immune regulation, apoptosis. Liver disease
FV Leiden	Healthy pregnant	71	4.5 (1.31–15.31)	Thrombophilia

Haram et al: The HELLP syndrome clinical issues and management, BMC pregnancy childbirth, 2009

PE/HELLP syndrome PATHOGENETIC MECHANISMS

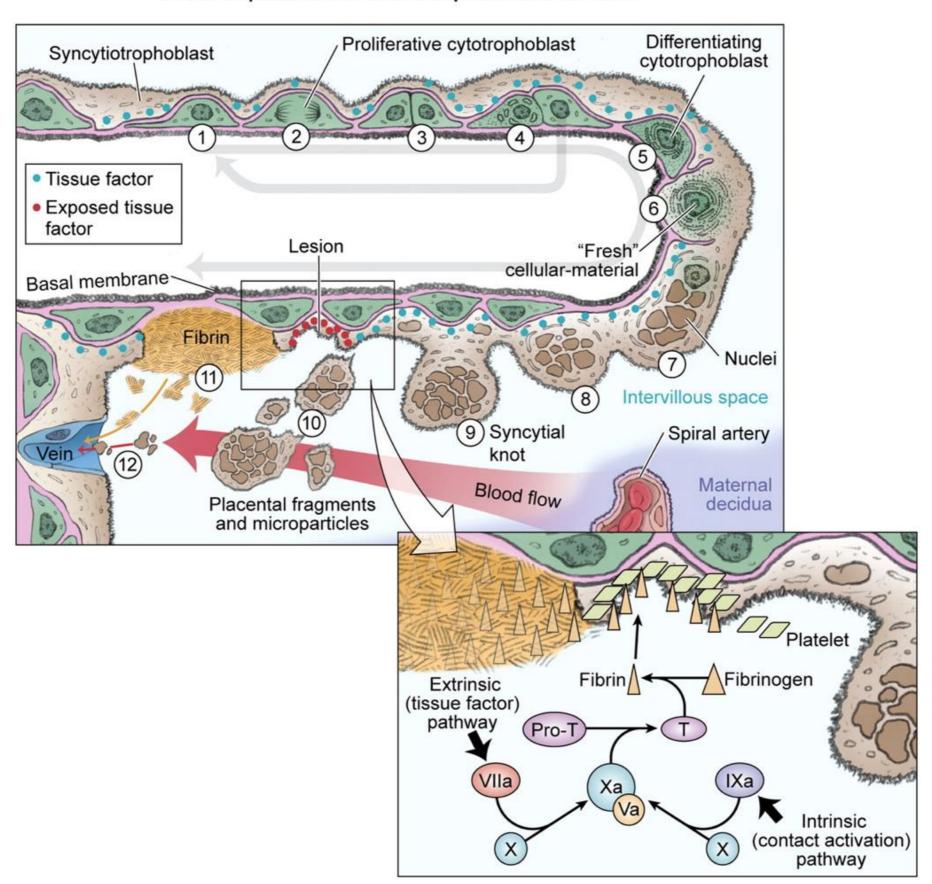

The role of inflammatory response

✓ release into the maternal blood of syncytiotrophoblast

particles (STBM)

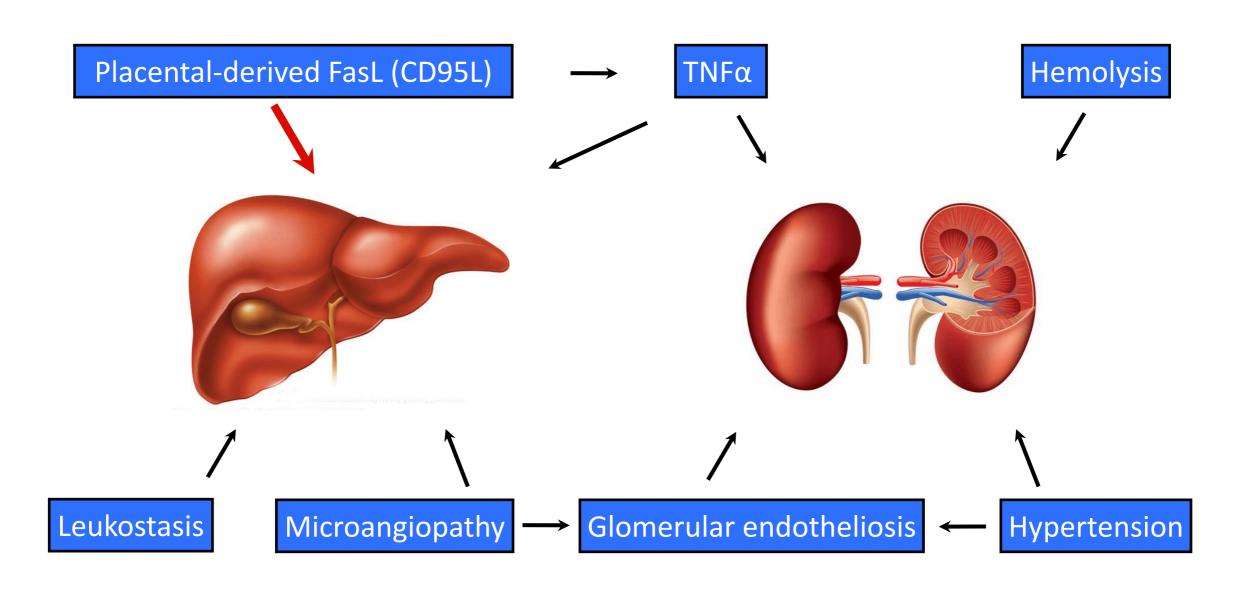
✓ activation of complement (?)

Fakhouri, Transfusion and Apheresis Science, 2016



Complement activation/dysregulation

- ✓ increase the blood levels of IL-6 and TNFa
- ✓ activation of vascular endothelial cells release of active multimeric vWF
- ✓ platelet aggregation and adherence of platelets to vessel intima


PE/HELLP syndrome pathogenetic mechanisms

Villous trophoblast turnover and placental thrombosis

PATHOGENETIC MECHANISMS

Liver and kidney dysfunction

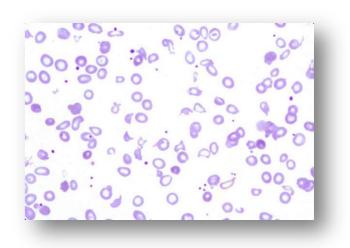
CLINICAL SYMPTOMS

Epigastric or right upper abdominal quadrant pain in women with hypertension or PE could be indicative the onset of HELLP syndrome

up to 30–60% of women have **headache**; about 20% **visual** symptoms

However, women with a HELLP syndrome might also have **unspecific symptoms** or subtle signs of preeclampsia or non-specific viral syndrome-like symptoms

CLINICAL SYMPTOMS


So, if you are not sure...

... CHECK THE BLOOD!

LAB DIAGNOSIS

H (Hemolysis) – MAHA

- fragmented (schistocytes) or contracted red cells with spicula (Burr cells) in the peripheral blood
- increased serum LDH levels and decreased haemoglobin concentrations
- \succ Low haptoglobin concentration (< 1 g/L < 0.4 g/L) can be used to diagnose haemolysis and is the **preferred marker of** haemolysis
- Increased serum bilirubin (≥ 1.2 mg/100 mL)

	Platelet		Enzymes	Maternal morbidity
Class I	< 50.000	> 600 UI/L	AST or ALT > 70 UI/L	40% - 60%
Class II	> 50.000 <100.000	> 600 UI/L	AST or ALT > 70 UI/L	20% - 40%
Class III	> 100.000	> 600 UI/L	AST > 40 UI/L	20%

Maternal complication	OCCURRENCE (%)
Eclampsia	4-9
Abruptio placentae	9-20
DIC	4-56
Acute renal failure	7-36
Severe ascites	4-11
Cerebral oedema	1-8
Pulmunary oedema	3-10
Subcapsular liver hematoma	1-2
Liver rupture	<2%
Retina detachment	1
Cerebral infarction	Few case report
Cerebral haemorrhage	1.5-40
Maternal death	1-25

TREATMENT AND MANAGEMENT

Hypertension control

- a-methyldopa and nifedipine can be used as initial treatment in Class III o Class II patients with acceptable blood pressure level
- Labetalol is commonly recommended if immediate reduction is required
- Magnesium sulfate as convulsions prophylaxis (4 g over 15-30 min, followed by a maintenance dose of 0.5-1 g/hour)

TREATMENT AND MANAGEMENT

High-dose dexamethasone treatment

Dexamethasone treatment did not reduce maternal complications (such as acute renal failure, pulmonary edema and oliguria)

COHELLP: collaborative randomized controlled trial on corticosteroids in HELLP syndrome

Leila Katz^{1*}, Melania Amorim², João P Souza^{3,4,5}, Samira M Haddad⁶, José G Cecatti⁶ and COHELLP Study Group

For fetal lung maturation

If birth is likely within 7 days in a woman with pre-eclampsia:

- give 2 doses of betamethasone² 12 mg intramuscularly 24 hours apart between 24 and 34 weeks
- consider giving 2 doses of betamethasone 12 mg intramuscularly 24 hours apart at 35–36 weeks.

For HELLP syndrome

Do not use dexamethasone or betamethasone to treat HELLP syndrome.

PRACTICAL APPROACH

Standard corticosteroid treatment to promote fetal lung maturity (and to eventually increase the recovery of platelet count)

	Platelet	LDH	Enzymes	Maternal morbidity
Class I	< 50.000	> 600 UI/L	AST or ALT > 70 UI/L	40% - 60%
Class II	> 50.000 <100.000	> 600 UI/L	AST or ALT > 70 UI/L	20% - 40%
Class III	> 100.000	> 600 UI/L	AST > 40 UI/L	20%

Complemento TMA e gravidanza

HELLP

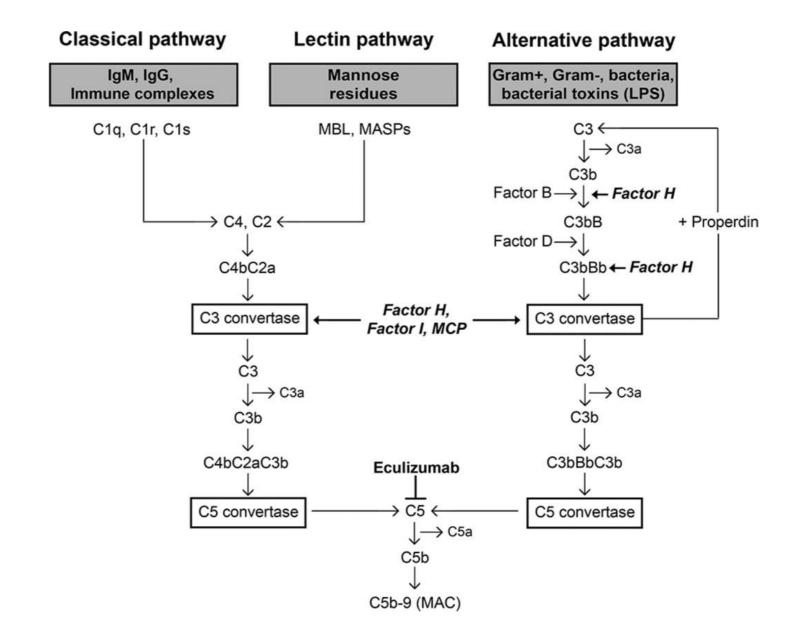
- Crovetto F, et al. 2012
 - 2/33 pz presentavano mutazione di geni del complemento
- Haeger M, et al. 1990
 - 10 pz con HELLP avevano C3a, C5a e C5b9 elevati in fase acuta
- Fakhouri F, et al. 2008
 - 4/11 pz con HELLP + IR avevano mutazioni di geni del complemento
- Ari E, et al. 2009
 - 21 pz con pre-eclampsia, 22 con HELLP, 24 controlli: no differenze in C3 e FH

Pre-eclampsia

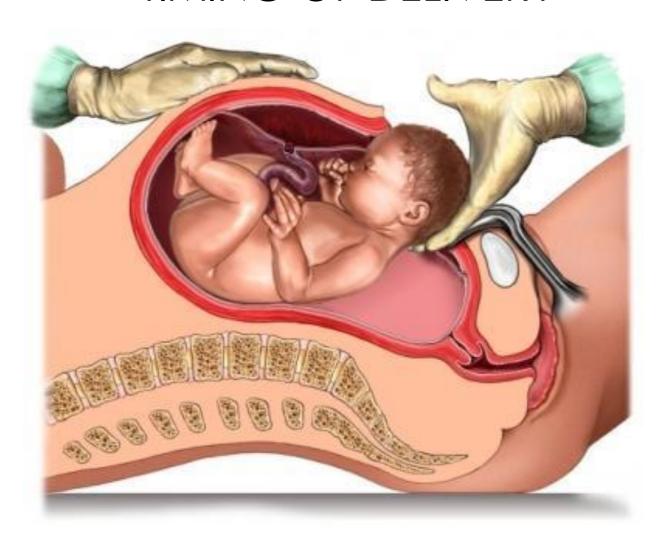
- · Haeger et al. 1991
 - 7/7, 4/7 e 0/7 pz con pre-eclampsia avevano rispettivamente C5a, C3a o C5b9 elevati al momento del parto rispetto ai controlli
- Burwick RM et al. 2009
 - 25 pz con pre-eclampsia avevano livelli urinari di C3a, C5a e c5b9 più elevati rispetto a controlli sani e ipertesi

Contents lists available at SciVerse ScienceDirect

Placenta



Case report


Eculizumab for the treatment of preeclampsia/HELLP syndrome

R.M. Burwick ¹, B.B. Feinberg*

Department of Obstetrics and Gynecology, Division of Maternal Fetal Medicine, Brigham and Women's Hospital, Harvard Medical School, CWN 304, 75 Francis St., Boston, MA 02115, USA

TIMING OF DELIVERY

> > 34 weeks:

> 24-34 weeks:

immediate delivery after maternal stabilization corticosteroids, after maternal stabilization, and delivery after 24 hours

TTP

DEFINITION

Thrombotic Thrombocytopenic Purpura was originally characterized by the pentad :

- Thrombocytopenia
- ❖ MAHA
- Fluctuating neurological signs
- Renal impairment
- Fever

However, TTP can present without the full pentad

TTP

CLASSIFICATION

- Upshaw-Schulman Syndrome
- ❖ Idiopathic TTP
- Secondary TTP
 - Pregnancy
 - > Infection
 - > Cancer
 - Bone marrow transplantation
 - Medication

TTP EPIDEMIOLOGY

- ✓ incidence of 6 cases per million / year
- √ 10-25% of all TTP cases occur during pregnancy....
- ✓ peak between 30 and 40 years-old
- √ feminine predominance (2-3 F/1 M)
- ✓ ...TTP occurs in 1/100, 000 pregnancies
- ✓ risk of recurrence in subsequent pregnancy in acquired TTP is about 20% and 100% in women with congenital TTP (Upshaw– Schulman-Syndrome - USS)

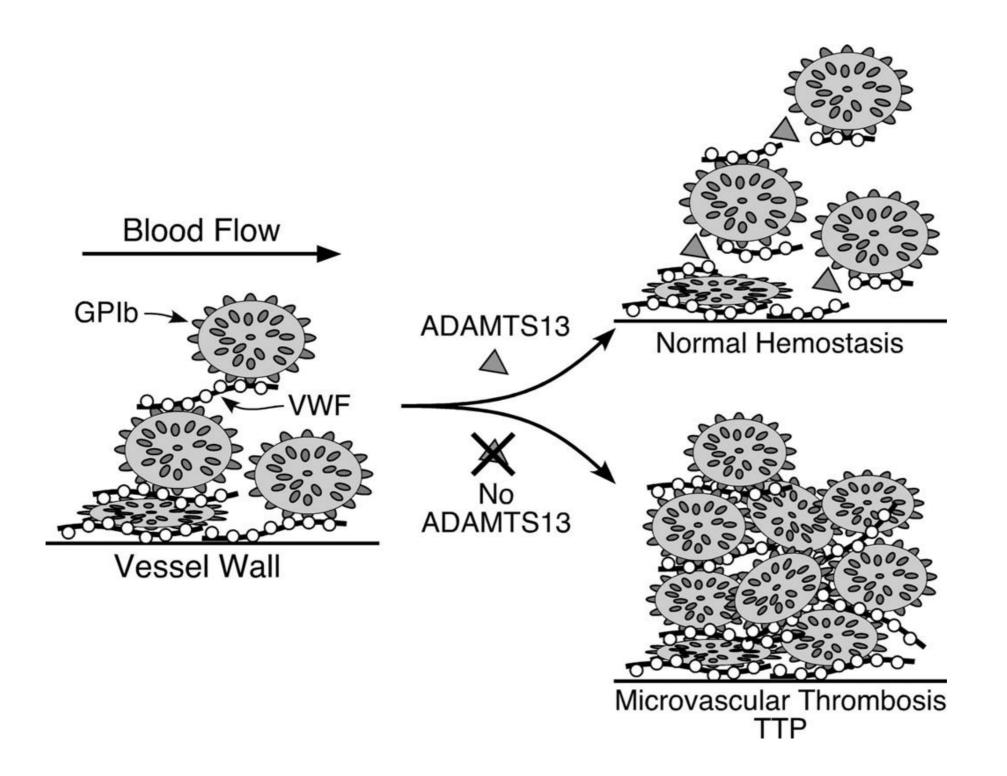
EPIDEMIOLOGY

Antepartum		Postpartum	
87,3% (n= 145)		12,7% (n= 21)	
< 14 weeks	14-28 weeks		> 28 weeks
11,7%	55.5%		32.8%


PATHOGENETIC MECHANISMS

Coagulation changes

Pregnancy is associated with physiological coagulation changes predisposing to hypercoagulability


During the course of pregnancy vWF levels in plasma progressively increase to reach levels 2.5-3 fold higher at term while **ADAMTS13** activity progressively decrease

PATHOGENETIC MECHANISMS

CLINICAL SYMPTOMS and LAB

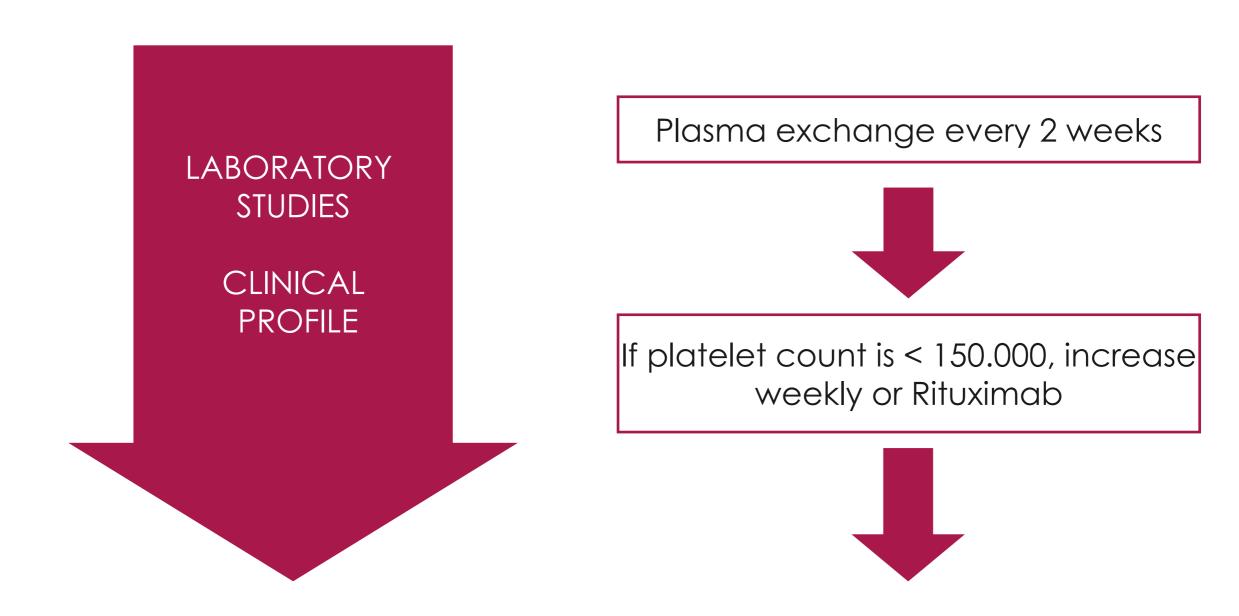
- The most constant sign of TTP is thrombocytopenia and neurological signs (about 65%) associated with fever
- During pregnancy, thrombocytopenia occurs commonly (6 to 10% of all pregnant woman)

Differential diagnosis:

- severity of thrombocytopenia
- presence of mechanical hemolytic anemia (schistocytes)

But, if you are not sure...

...CHECK THE BLOOD!


DIAGNOSIS

DIFFERENTIAL DIAGNOSIS	Congenital TTP (n=10, 24%)	Acquired TTP (n=32, 76%)
Nulliparity	100%	62.5%
ADAMTS13 <10% at onset	100%*	100%**
Anti-ADAMTS13 at onset	0% (0/10)	72% (23/32)
*ADAMTS13 remained undetectable in re	emission	
**9 patients recovered ADAMTS13 >30%	in remission and were diagnosed	d as aTTP

M. Moatti-Cohen et al. On behalf of the French Reference Center for Thrombotic Microangiopathies.

Blood: 2012 .vol 119 n 24

TREATMENT AND MANAGEMENT: Before 24 weeks'

TREATMENT AND MANAGEMENT: After 24 weeks'

LABORATORY STUDIES

CLINICAL PROFILE

FETAL MONITORING

Plasma exchange/Rituximab

Bethametasone for fetal lungs maturity

Magnesium Sulfate for fetal neuro-protection

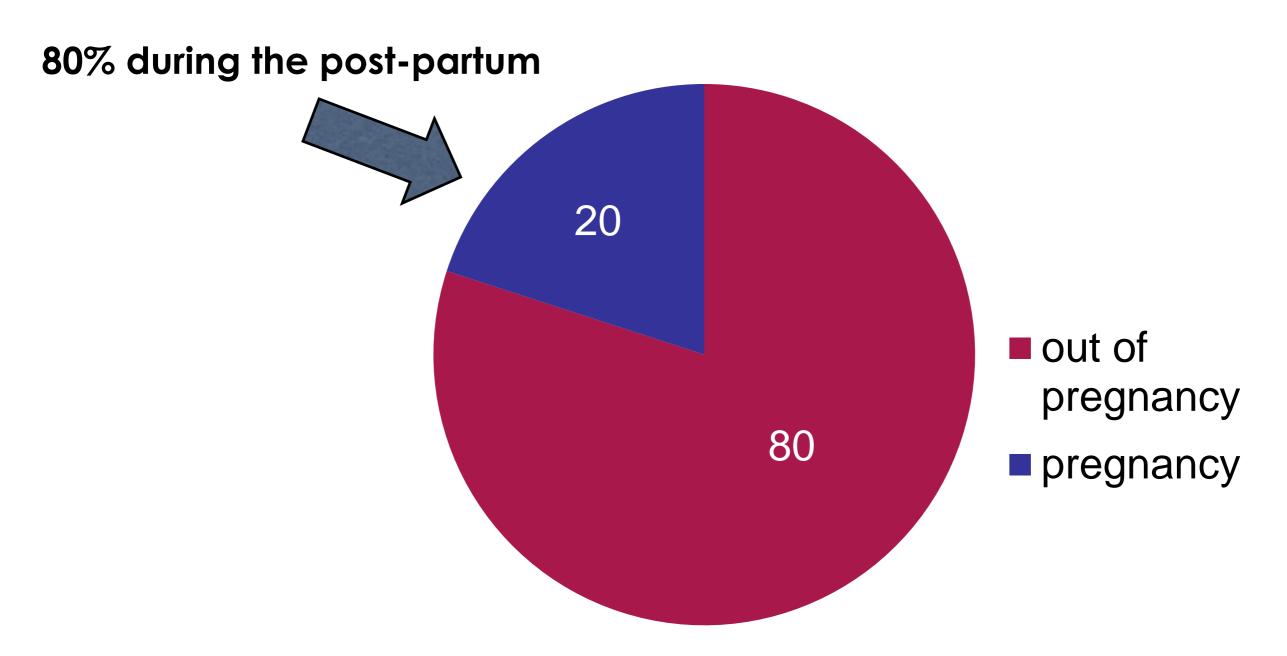
Immediately delivery is recommended if not responding to plasma exchange or in severe IUGR

aHUS

HISTORY AND DEFINITION

Atypical Haemolytic Uremic Syndrome is defined by the triad of

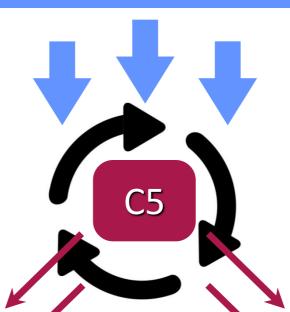
- Thrombocytopenia
- MAHA
- Severe renal impairment


In absence of Shiga-toxin (Stx) producing Escherichia coli (STEC)

aHUS

EPIDEMIOLOGY

- ❖ The prevalence of aHUS is not precisely known (1-9/1.000.000)
- ❖ Onset during childhood (≤ 18 years) appears slightly more frequent than during adulthood
- Feminine predominance in adults
- aHUS complicated about 1/25 000 pregnancies worldwide


EPIDEMIOLOGY

Fakhouri et al, Pregnancy associated aHUS revisited in the era of comp lent gene mutation, J Am Soc Nephrol, 2010

PATHOGENETIC MECHANISMS

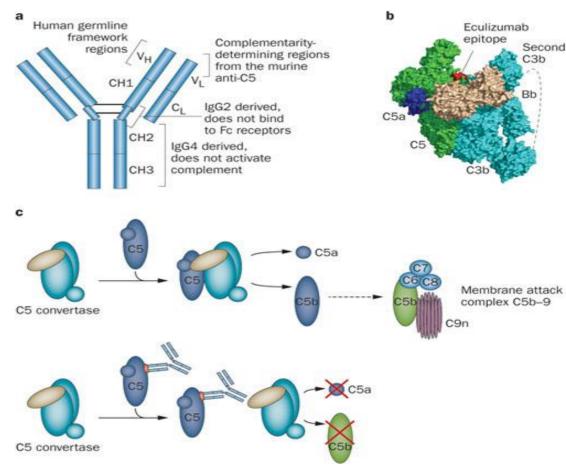
Alternative pathway

- Mutation in genes such C3, CFB, **CFH**, CFI, MCP e THBD
- Polymorphisms in genes such as
 CFH and CFHR1
- Autoantibodies to CFH

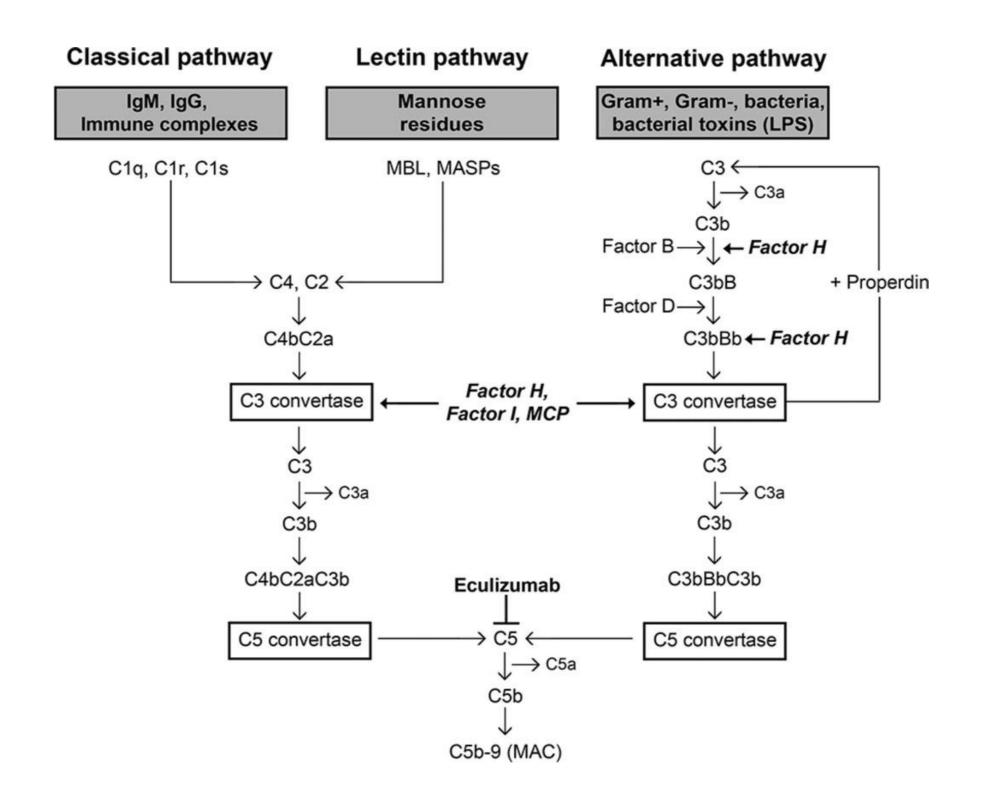
Potent Anaphylatoxin
Chemotaxis
Proinflammatory
Endothelial Activation
Prothrombotic

PATHOGENETIC MECHANISMS

- Mutation in genes such C3, CFB, CFH, CFI, MCP e THBD
- Polymorphisms in genes such as **CFH** and CFHR1
- Autoantibodies to CFH


p - aHUS

CLINICAL SYMPTOMS


- > The most constant sign of p-aHUS is severe renal impairment and hypertension (80%)
- Most cases of p-aHUS occur during postpartum period with severe acute onset associated with MAHA
- In contrast, thrombocytopenia is moderate and neurological impairment is uncommon

TREATMENT AND MANAGEMENT

- plasma infusions and plasma exchange (to start rapidly because of the high risk of ESRD)
- Complement activation modulators (eculizumab) represents promising therapeutic options for severe forms of aHUS

eculizumab: mechanism of action

TMA IN PREGNANCY

Pre-eclampsia/ HELLP

Pregnancy exclusive

Associated with hypertension

Resolution with delivery (if antepartum)

p-TTP

Usually associated with fever

Neurological findings

ADAMTS13 < 10%

p-aHUS

Renal involvement

Postpartum period

Complement gene mutation

TMA in Pregnancy

THANK YOU!

