

Padova, 13-14 Maggio 2016

L'INIBITORE

Giancarlo Castaman

Centro Malattie Emorragiche, Dipartimento Oncologico Azienda Ospedaliero-Universitaria Careggi,

Firenze

Summary

• Definition and Epidemiology

• Mechanisms and diagnosis

• Risk factors

• Prevention

Definition and Epidemiology

INHIBITORS

- Antibodies that neutralize infused FVIII or FIX
- Frequency: ~25% in hemophilia A / ~ 3% in hemophilia B
- Typically developing at beginning of treatment

- Onset after a median of 15 exposures to exogenous FVIII
- After 50-75 exposures: plateau
- Incidence in PTP (> 150 ED): 2/1000 pat/year

Prepublished online April 6, 2011; doi:10.1182/blood-2010-09-308668

The incidence of factor VIII inhibitors throughout life in severe hemophilia A in the United Kingdom

Charles RM Hay, Ben Palmer, Elizabeth Chalmers, Ri Liesner, Rhona Maclean, Savita Rangarajan, Michael Williams and Peter W Collins

Blood 2011; 117: 6367

Age (years)

Inhibitor incidence in severe patients

Gouw SC *et al*. Blood 2013;121:4046–55

F8 genotype and adjusted inhibitor risk

F8 mutation	Patients n	Inhibitor n (%)		Inhibi at 2 % (9	Inhibitor risk at 20 ED % (95%Cl)		tor risk 0 ED 5%Cl)
Mutations in >10 patients							
R531C	35	1	(2.9)	.0		.0	
N618S	58	1	(1.7)	3	(0-9)	3	(0-9)
R2150H	57	9	(15.8)	2	(0-7)	12	(1-24)
R593C	104	12	(11.5)	9	(2-17)	19	(7-30)
D2074G	11	3	(27.3)	(21)	(0-47)	21	(0-47)
R2159C	21	3	(14.3)	9	(0-26)	39	(3-75)
W2229C	10	5	(50.0)	(42)	(5-78)	42	(5-78)

Mechanisms and diagnosis

Characteristics of anti-FVIII antibodies

- Largely polyclonal IgG4
- They do not fix complement
- Time-dependent
- Type 1 inactivation kinetic

Structural domains of Human FVIII

- A2, A3 and C2 doamins, and light chain most immunogenic
- Often Abs anti C2 domain inhibiting phospholipids and VWF binding VWF and cleavage by Fxa (present in ~ 70 % of cases)
- Abs anti A2 domain (aa 454-509) inhibit binding with FX
- Abs anti B domain increase clearance of F VIII

When should an Inhibitor be suspected ?

• <u>Clinically:</u>

- Worsening of clinical phenotype
- Bleeding hardly responsive to replacement therapy

• Laboratory:

- PTT not corrected by normal plasma
- FVIII not appropriately recovered after infusion
- Inhibitor testing

Mixing studies

• No inhibitor:

 $\frac{Patient+Normal}{Normal}{<}1.2$

- Inhibitor (e.g.LAC, heparin): $\frac{Patient+Normal}{Normal} > 1.2$
- *Time-dependent* (*FVIII*):

 $\frac{Patient120min+Normal120min}{Normal120} > \frac{Patient+Normal}{Normal}$

- Patient plasma is serally diluted (1:2 1:1024) in buffer, hence diluting the inhibitor. Each dilution is then mixed 1:1 in normal plasma
- A normal plasma is serially diluted (1:2 1:1024) in FVIII deficient plasma
- Incubate 2h at 37° C
- Measure FVIII activity. Normal plasma 1:2 is 100% residual activity

Example: 1:20 Dilution, 30% Residual activity

Example: 1:20 Dilution, 30% Residual activity: 1.75 BUx20= 35 BU

High Responding / Low Responding

- <u>High responding</u>: >5 Bethesda Units' (BU)
 - Benefit of FVIII/IX replacement exceptional
 - Replacement therapy triggers anamnestic response
- Low Responding:
 - <u>**True:</u>** < 5 BU even after stimulation</u>
 - <u>Transient:</u> < 5 BU disappear while continuing replacement therapy within 6 – 12 months
- FVIII/FIX can be used at increased dose (neutralizing + therapeutic dose)

Treatment according to Inhibitor titer

Risk factors

Risk factors for inhibitor development

F8 gene mutations and inhibitor risk in PUPs

HIG	H RISK					
100%						
	Multi-domai	in				
	Large	Light chain				
	deletion	Nonsense				
		mutation	Intron-22	Non A-run		
0%	Single domain	Hoovy chain	inversion	Small deletions	C1-C2 junction Missense	
		Heavy Chain		A-run	mutations	Splice site
					iunction	mutations
LO	N RISK				Oldenburg et al. Haematologica. 2000	25 1: 85(10 Suppl): 7-13
					Oldenburg et al. Haematologica, 2000	; 85(10 Suppl): 7-13

Inhibitors in Hemophilia B

- Rarer compared to hemophilia A (< 5 % vs 25-30 %)
- Only in severe
- Correlation with gene deletion or nonsense mutations
- Risk of allergic reactions/anaphylaxis
- Risk of nephrotic syndrome upon ITI

'Genetic' risk of inhibitor

High-risk

- "Null" mutations
- CRM- phenotype
- HLA class II profile
- Race
- Familial occurrence

Low-risk

- Point mutations with minimal effect on secondary and tertiary FVIII structure
- CRM+ phenotype
- Splice site (alternative splicing?)
- HLA class II profile

Can an inhibitor be prevented in those patients with genetic high risk features?

Identifying Nongenetic Risk Factors for Inhibitor Development in Severe Hemophilia A

Samantha C. Gouw, MD, PhD¹ Karin Fijnvandraat, MD, PhD¹

Seminars in Thrombosis & Hemostasis Vol. 39 No. 7/2013

Non-genetic risk factors	Level of certainty		
FVIII exposure	Certainly a risk factor		
FVIII product type: specific pasteurized plasma-derived product types	Certainly a risk factor		
Periods of intensive treatment	Certainly a risk factor		
Prophylaxis	Likely a protective factor		
Surgical procedures	Likely a risk factor		
Dose of FVIII treatment	Possibly a risk factor		
FVIII product type: certain recombinant FVIII products	Possibly a risk factor		
Source of FVIII product: recombinant versus plasma	Unlikely a risk factor		
Switching between FVIII products	Not a risk factor		
Age at first FVIII exposure	Not a risk factor		
Breastfeeding	Not a risk factor		
Vaccinations, infections, immune modulating medication, allergic	Not enough available data		
constitution			
Extravasation of FVIII product	Not enough available data		
Mode of infusion (bolus infusion, continuous infusion)	Not enough available data		

Type of concentrate

Higher crude incidence of inhibitors in previously untreated children with severe hemophilia A (PUPs) treated with recombinant FVIII

SIPPET (ASH 2015): in PUPs, the combined risk of developing a high or low titer inhibitor within the first 50 EDs when using recombinant factors was **<u>1.87-fold</u>** higher

F8 genotype and adjusted inhibitor risk

F8 mutation	Patients n	In	hibitor n (%)	Inhibi at 2 % (9	Inhibitor risk at 20 ED % (95%Cl)		Inhibitor risk at 50 ED % (95%Cl)	
Mutations in >10 patients								
R531C	35	1	(2.9)	.0		.0		
N618S	58	1	(1.7)	3	(0-9)	3	(0-9)	
R2150H	57	9	(15.8)	2	(0-7)	12	(1-24)	
R593C	104	12	(11.5)	9	(2-17)	19	(7-30)	
D2074G	11	3	(27.3)	21	(0-47)	21	(0-47)	
R2159C	21	3	(14.3)	9	(0-26)	39	(3-75)	
W2229C	10	5	(50.0)	42	(5-78)	42	(5-78)	

Prevention of inhibitors

How to attenuate inhibitor occurrence? (I)

- Identify the responsible mutation
- Replacement therapy in association with a systematic inflammatory response should be avoided if possible
- Regular treatment provided at young age to prevent bleeding in presence of minimum coexisting inflammatory markers is preferable
- Low dose prophylaxis could be an advantage in high-risk patients, but not definitely proven

How to attenuate inhibitor occurrence?¹ (II)

- Vaccination by subcutaneous route to avoid combined infusion of the deficient factor in a setting of "alert signal"
- Peripheral vein should be preferred first, but no risk evident with CVC placement, unless infection occurs
- Co-administration of deficient factor and immunosuppressive drugs could reduce the risk, as shown in a mouse model of hemophilia A²

1. Astermark, Blood 2015; 125(13): 2045-51. 2. Moorhead, JTH abs 56.6, 2013

F8 missense mutations associated with inhibitor risk in mild-moderate hemophilia A

- Genotyping advisable also in mild-moderate hemophilia A
- Reducing the risk by using desmopressin

Eckhardt C L et al. Blood 2013;122(11):1954-62. Castaman , Blood 2014; 124(15): 2333-6

High risk F8 mutation

CONCLUSIONS

- Inhibitor occurrence remains the most important challenge in hemophilia treatment
- Risk profiling designed at diagnosis (e.g, family history, mutation...)
- Close surveillance is recommended especially during the first days of treatment
- Testing after period of intensive treatment (e.g., surgery) should also be undertaken