

CONVEGNO MICROANGIOPATIE TROMBOTICHE UCSC 2016

Roma, 19 febbraio 2016 Fondazione Policlinico Universitario A. Gemelli Largo Agostino Gemelli, 8 - 00168 Roma (Aula Brasca)

Approccio morfologico alle microangiopatie trombotiche

Gina Zini Polo Oncologia e Ematologia Policlinico A. Gemelli Università Cattolica S. Cuore - Roma **Thrombotic microangiopathies**

Occlusive microangiopathic disorders with

- Microvascular thrombosis
- > Thrombocytopenia
- Red blood cell mechanical damage

History (I)

Moschcowitz (1924)

First description of a 16 year-old girl who died within 2 weeks after the abrupt onset and progression of petechial bleeding, pallor, fever, paralysis, hematuria and coma. Disseminated microvascular hyaline thrombi largely composed of platelets were detected at autopsy in arterioles and capillaries.

In January of 1924¹ and apparently for a second time in February,² Moschcowitz presented a case before the New York Pathological Society of "a hitherto undescribed disease (ref. 1 at 21)" that he felt was "remarkable, clinically and anatomically (ref. 2 at 89)." A healthy 16-year-old girl suddenly developed weakness in her arms, pain on moving her wrists and elbows, pallor, and fever (38°C-39°C). Her symptoms worsened and on the tenth day of illness she was admitted to the hospital with anemia, leukocytosis, a few petechiae on one arm, and occult blood in gastric contents and stool. The serum creatinine was normal. Four days later she developed mild left hemiparesis and facial paralysis. The next day she became comatose and died. A limited autopsy showed hyaline thrombi in terminal arterioles and capillaries of the heart, kidney, spleen, and liver; the lungs were spared. Moschcowitz did not obtain a platelet count and did not report schistocytes in the blood film, so we do not have a complete description from him of thrombocytopenia or microangiopathic hemolytic anemia. But based on the pathology at autopsy, we recognize this patient as the first published example of idiopathic thrombotic thrombocytopenic purpura (TTP).

History (II)

Singer (1947):

First introduction of the term Thrombotic Thrombocytopenic Purpura (TTP).

Symmers (1952):

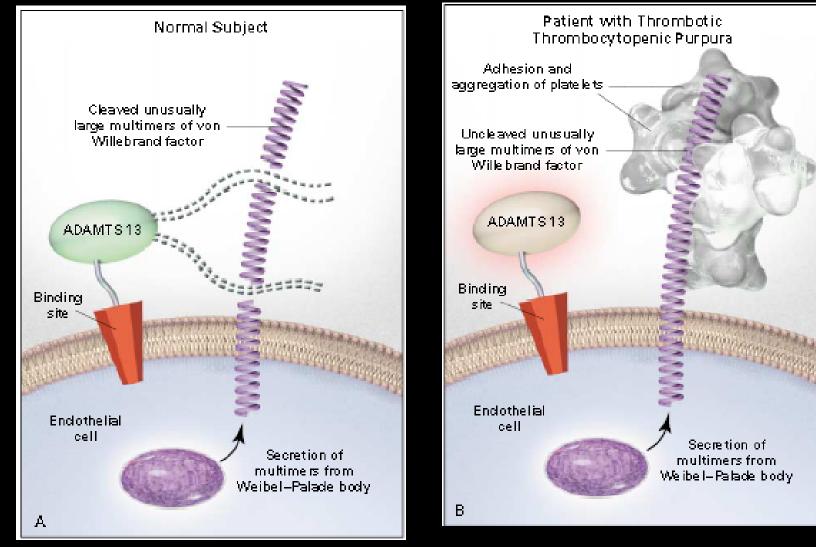
First introduction of the term Thrombotic Micro-Angiopathy (TMA) to describe the vascular lesions observed in TTP.

Gasser (1955):

First introduction of the term Hemolytic Uremic Syndrome (HUS) in a child presenting with hemolytic anemia, thrombocytopenia and renal failure with diffuse bilateral cortical necrosis.

Moake (1982):

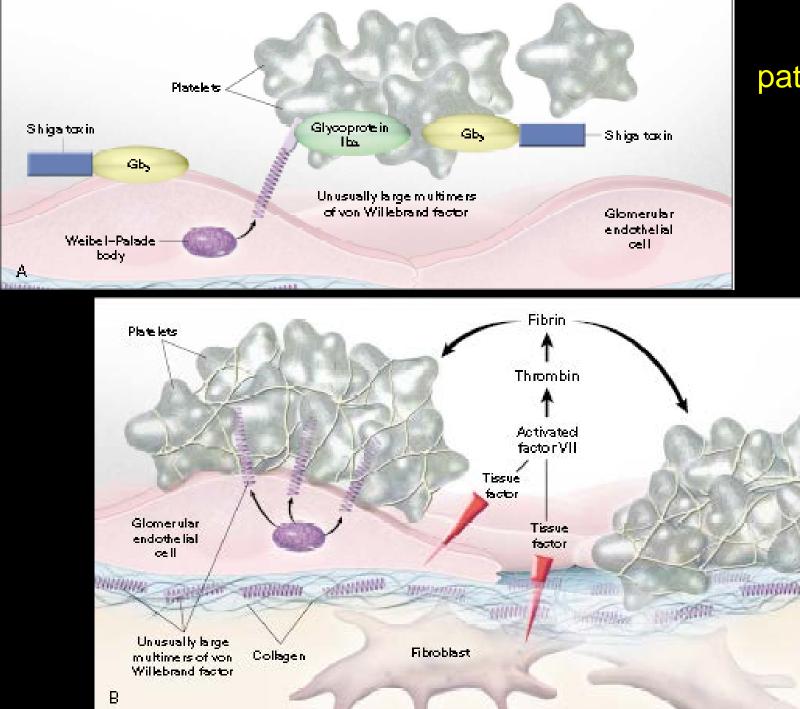
First pathogenetic hypothesis: patients with relapsed chronic TTP show plasmatic large amount of "vWF unusual large multimers" delivered by endothelial cells.


Karmali (1985):

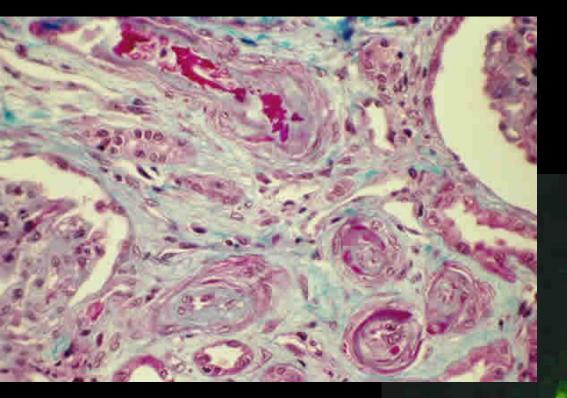
First association between HUS and *Escherichia Coli* Shiga toxin.

Clinical & pathological manifestations

Microangiopathy	Pathogenesis	Clinical presentation
Systemic platelet thrombi	Reduced capability to cleave vWF large multimers	Thrombotic Thrombocytopenic
		Purpura (TTP)
Renal platelet thrombi	Shiga toxin	Hemolytic Uremic Syndrome (HUS) associated to <i>E. Coli</i> infection (children)
	Factor H plasmatic deficiency	Familial/recurrent HUS
Systemic and renal thrombi	Transplant Drugs (mitomicin, cyclosporin)	HUS o TTP


TTP pathogenesis

A Disintegrin And Metalloproteinase with a Thrombospondin type 1 motif, member 13

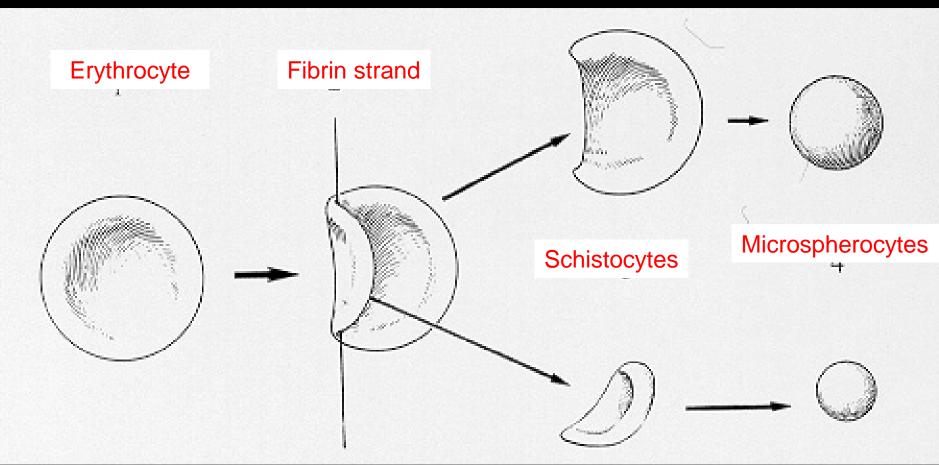

Moake JL 2002, NEJM

HUS pathogenesis (I)

HUS pathogenesis (II)

Renal thrombotic microangiopathy with vessels occlusion

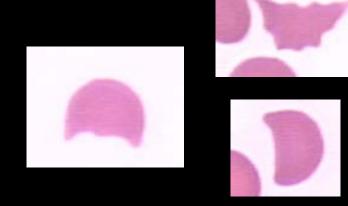
Anti-fibrinogen serum

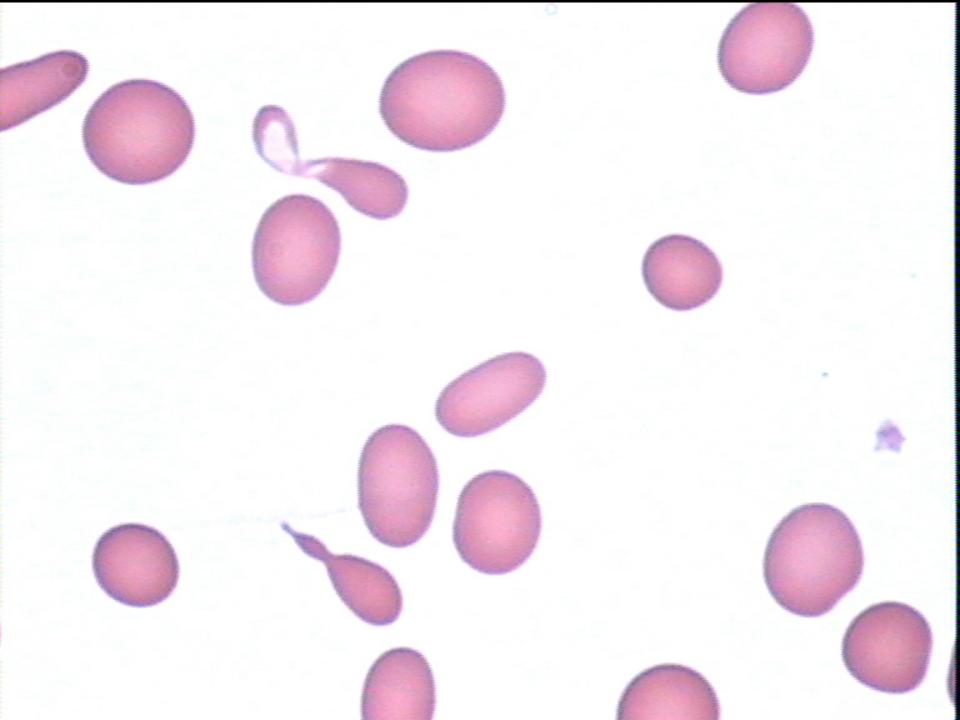

Clinical presentation

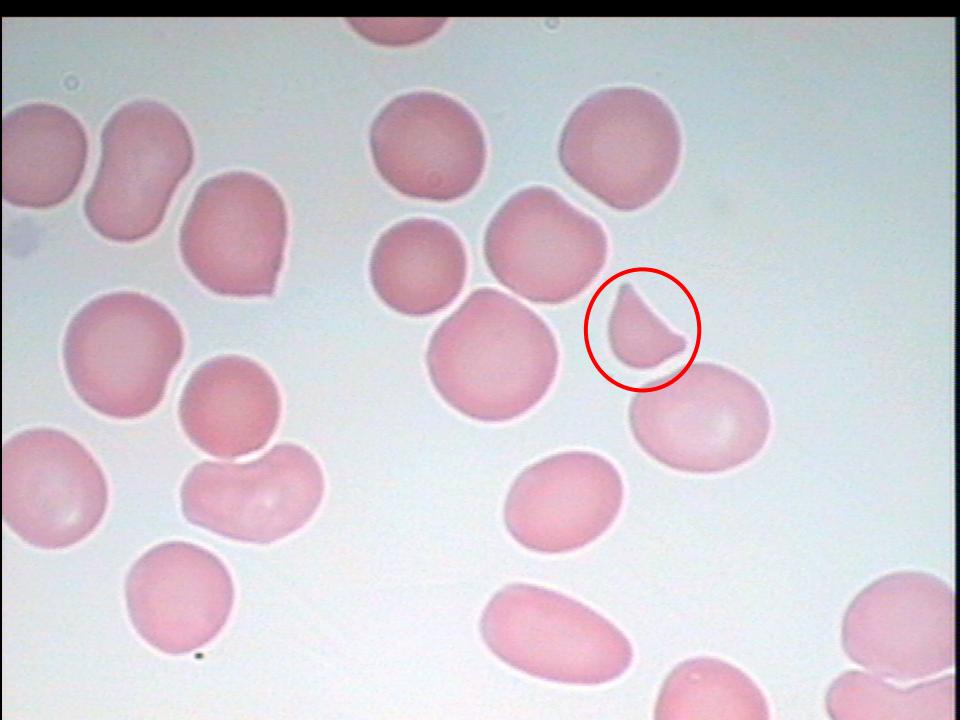
- Thrombocytopenia with increased megakaryocytes
- Red blood cell fragmentation
- Lactate dehydrogenase (LDH) increase

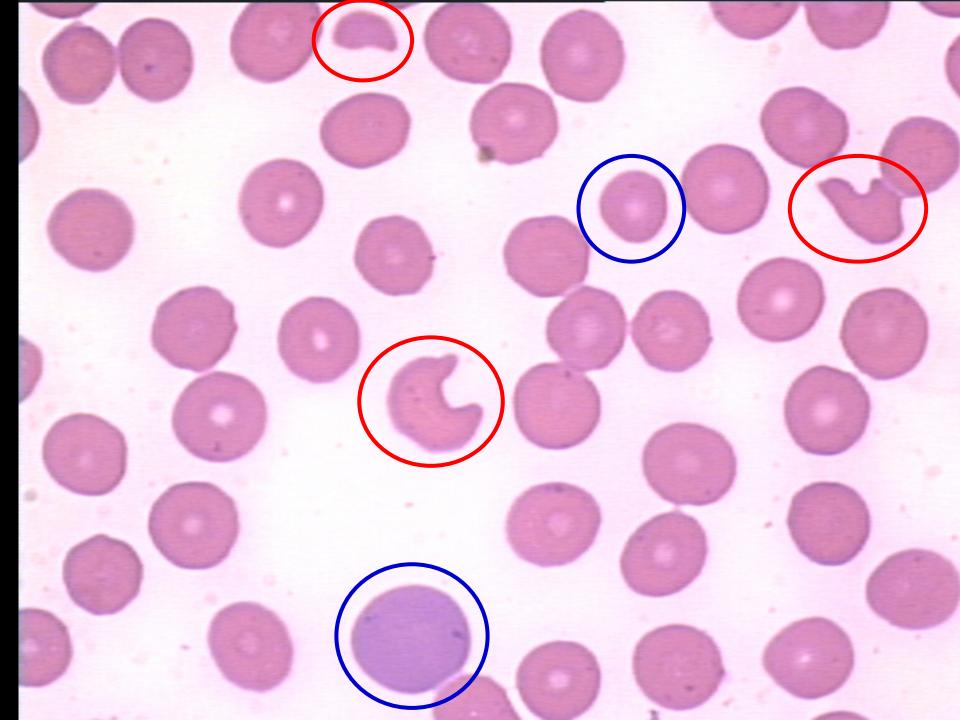
Clinic pentad

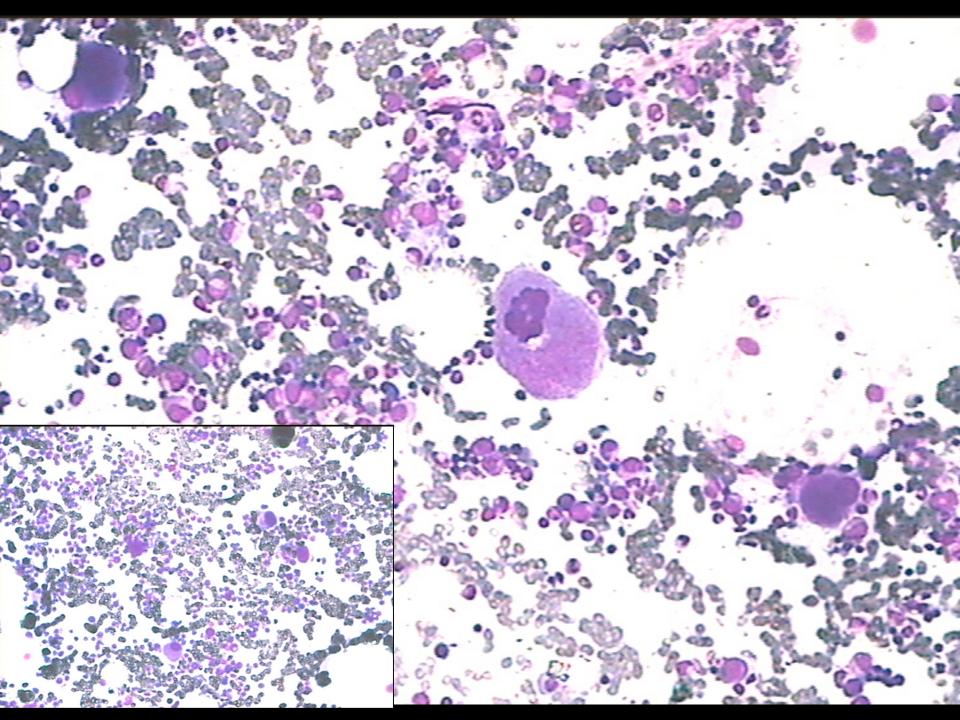
- Thrombocytopenia
- Microangiopathic hemolytic anemia
- Neurological disorders
- Renal failure
- Fever


Schistocyte genesis


Bessis M: Blood Smears Reinterpreted, Springer-Verlag,1977




Schistocytes



- Red blood cells fragments of triangular/crescent/ helmet form with rectilinear profile segment testifying the zone of break
- Observed on blood smears
- > They result from mechanical, toxic or heat-induced damage of normal RBC
- They appear under several conditions (after surgery, solid organ and/or bone marrow transplantation, HIV infection, in diseases with cardiac and vessel abnormalities, pre-eclampsia, severe renal diseases, gastric carcinoma)
- Often the earliest sign of thrombotic microangiopathy (TMA): detection and quantification are thus of primary importance
- Morphological identification requires well-trained hematologists/biologists

Diseases & Schistocytes

Mechanical hemolytic anemias

Microangiopathic hemolytic anemias Disseminated Intravascular Coagulation (DIC) Hemolytic Uremic Syndrome (HUS) Thrombotic Thrombocytopenic Purpura (TTP)

≻Other anemias

Surgery

- Transplant Associated Microangiopathy (TAM)
- Vessels inflammatory diseases
- Vessels abnormalities
- Infectious diseases
- Bone marrow pathologies (primary and secondary)

Classical Reference values

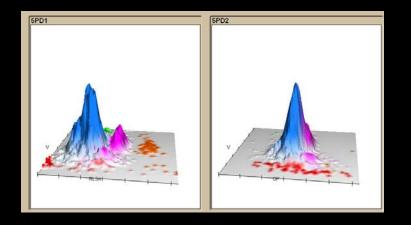
Adults: $\leq 0.1\%$

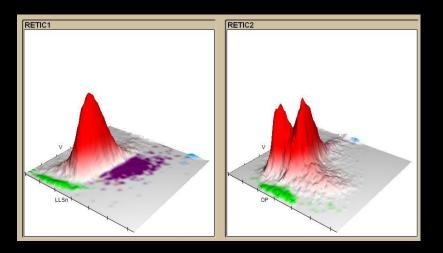
Newborn: 0.3-1.9%

Preterms: $\leq 5.5\%$

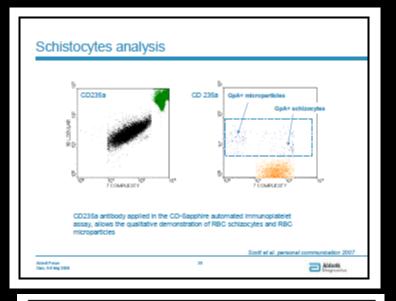
Schistocytes are usually

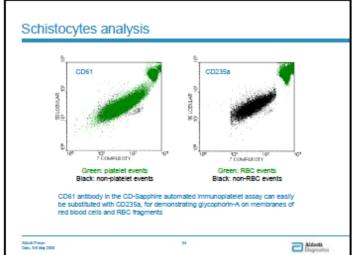
- specifically requested by clinicians
- counted on PB smears by optical microscope
- expressed as % of 500-1000 red blood cells


n = 10,000	n = 1,000	n = 500	n = 200	n = 100	а
0 - 0.1	0 - 0.4	0 - 0.7	0 - 1.8	0 - 3.6	0
0.8- 1.3	0.5- 1.8	0.3- 2.3	0.1- 3.6	0.0- 5.4	1
1.7- 2.3	1.2- 3.1	1.0- 3.6	0.6- 5.0	0.2- 7.0	2
2.6- 3.4	2.0- 4.3	1.7- 4.9	1.1- 6.4	0.6- 8.5	3
3.6- 4.5	2.9- 5.4	2.5- 6.1	1.7- 7.7	1.1- 9.9	4
4.5- 5.5	3.7- 6.5	3.3- 7.3	2.4- 9.0	1.6- 11.3	5
5.5- 6.5	4.6- 7.7	4.1- 8.5	3.1- 10.2	2.2-12.6	6
6.5- 7.6	5.5- 8.8	4.9- 9.6	3.9- 11.5	2.9-13.9	7
7.4- 8.6	6.4 9.9	5.8-10.7	4.6- 12.7	3.5-15.2	8
8.4 9.6	7.3-10.9	6.6-11.9	5.4-13.9	4.2- 16.4	9
9.4-10.7	8.2- 12.0	7.5-13.0	6.2- 15.0	4.9- 17.6	10
14.3- 15.8	12.8-17.4	12.0- 18.4	10.4-20.7	8.6-23.5	15
19.2- 20.8	17.6-22.6	16.6- 23.8	14.7- 26.2	12.7- 29.2	20
24.1- 25.9	22.3- 27.8	21.3- 29.0	19.2- 31.6	16.9- 34.7	25
29.1- 31.0	27.2- 32.9	26.0- 34.2	23.7- 36.9	21.2- 40.0	30
34.0- 36.0	32.0- 38.0	30.8- 39.4	dults: ^{28.4} – ^{42.0} ≤ 0.1	25.7- 45.2	35
39.0-41.0	36.9- 43.1	35.7- 44.4	33.2- 47.1	30.3- 50.3	40
44.0-46.0	41.9- 48.1	40.6- 49.5	38.0- 52.2	35.0- 55.3	45
49.0- 51.0	46.9- 53.1	45.5- 54.5	ewbor ^{42.9} - ^{57.1} 0.3-1	39.8- 60.2	50
54.0- 56.0	51.9- 58.1	9 7 3 0.5- 59.4	ewbor [] 5. 62.0 0.3-1	44.7- 65.0	55
59.0- 61.0	56.9- 63.1	55.6- 64.3	52.9- 66.8	49.7-69.7	60
64.0- 66.0	62.0- 68.0	60.6- 69.2	58.0- 71.6	54.8- 74.3	65
69.0- 70.9	67.1-72.8	65.8-74.0	reterms:1- 76.3 ≤ 5.5	60.0– 78.8 P	70
74.1- 75.9	72.2-77.7	71.0- 78.7	68.4 80.8	65.3- 83.1	75
79.2- 80.8	77.4 82.4	76.2- 83.4	73.8- 85.3	70.8- 87.3	80
84.2- 85.2	82.6- 87.2	81.6- 88.0	79.3- 89.6	76.5-91.4	85
89.3-90.0	88.0- 91.8	87.0-92.5	85.0- 93.8	82.4 95.1	90
90.4 91.0	89.1-92.7	88.1-93.4	86.1-94.6	83.6- 95.8	91
91.4 92.0	90.1- 93.6	89.3-94.2	87.3- 95.4	84.8- 96.5	92
92.4 93.	91.2- 94.5	90.4-95.1	88.5- 96.1	86.1-97.1	93
93.5- 94.	92.3- 95.4	91.5- 95.9	89.8-96.9	87.4 97.8	94
94.5- 95.	93.5- 96.3	92.7- 96.7	91.0- 97.6	88.7- 98.4	95
95.5- 96.	94.6- 97.1	93.9- 97.5	92.3- 98.3	90.1- 98.9	96
96.6- 97.	95.7- 98.0	95.1- 98.3	93.6- 98.9	91.5- 99.4	97
97.7- 98.	96.9- 98.8	96.4 99.0	95.0- 99.4	93.0- 99.8	98
98.7- 99.	98.2- 99.5	97.7- 99.7	96.4 99.9	94.6- 99.9	99
99.9-100	99.6-100	99.3-100	98.2-100	96.4-100	100

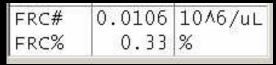

Table 7–3. Confidence Limits (95%) for Various Percentages of Blood Cells of a Given Type as Determined by Differential Counts

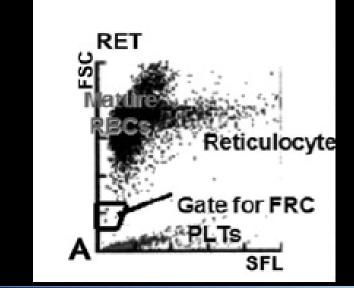
Automated red cell fragments


Automated Red Cell Fragment


Coulter DXH800

Abbott Sapphire


RBC fragments flag & quantitation: Sysmex XE-2100 method


Flag for presence of fragments is automatically provided by the XE-2100 analyser.

➤ The count is performed by gating an area on the Retics channel scattergram where whole blood is stained with a fluorescent dye.

➤The forward scatter and the intensity of fluorescence allow identification and count of RBC fragments.

➤They correspond to events with a volume smaller than RBC and with RNA content lower than platelets.

-2100 - [Graf ie Edita Mo		Adoni Invio Setta	ggi Finestre Info							-15
-			ا 🕑 ا 🌚	X	5		8 3	1	2	
M. 5945	H-Copy	Modifica Menu	QC L. Lavoro		afici AULO	Marxuele Cancella	51 QU	Ultimi20 Valid		
	e No.Car	npione	1918164	3 Nasc	ita	Rack	32	rubo 2	Data 21/0	04/20
	ID	Paz		Sesso		Dr.			Ora [16:4	12
		Nome				Commenti 🗖				
rincipa' arametr	le Graff	ici WBC F	BC Cum	lativi	Q-Flags	Service HPC		ca(W) Rice	occurrent and a second	
Param.	Dati	Unita'	Reticol	ociti		RI	ET	RE	T-EXT	
RBC	3.20	10^6/uL	Param.	Dati	Unita'	2		13		
RBC-0	2.98	10/6/uL	RET-He	29.4	pg					
HGB	9.2	g/dL	RBC-He	31.6	pg					
HCT	28.8	%	D-He	-2.2						
MCV MCH	90.0	fL	RET-Y	167.7	ch					
MCHC	28.8 31.9	pg g/dL	RBC-Y	175.2				e5/22		
RDW-SD	51.8	fL	IRF-Y	155.5	ch					
RDW-CV	15.8	%	RPI FRC#		10/6/uL					57
PLT	56	10/3/uL	FRC%	0.33		PL	_т-о	NR	BC	
PLT-I	56	10/3/uL	I-AC.6	0.33		*		2		
PLT-0	57	10/3/uL								
PDW	16.3	fL	Flag(s)					-		
MPV	12.1	fL	RBC/RE	т			25			
P-LCR	42.0	%	Anemi		-					
PCT RET#	0.07	- % 10^6/uL	Ariemi	ck.	2			-		
RET#	1.02	10/6/uL								
IRF	8.4	%			-			STL		st
LER	91.6	%			1	RB	C	PL		
MER	7.9	%	PLT				1			1
HER	0.5	%	Throm	- 00	<u>ia</u>		11	/ 1		
NREC#		10/3/uL			1					
	2	1			2.4		~~~~			
art I rd a	6 M3 1 100	E-2100 - [Grafici]	31316 Flanny (At)	1314	cessories	31/5 Floppy (A:)	1		< 🖬 🖏 🗖 😣	1

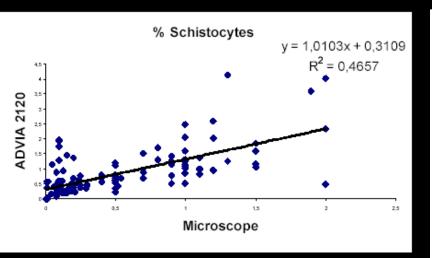
RBC fragments identification and enumeration with the ADVIA 2120 method

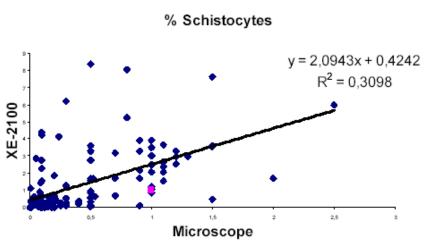
 integrated analysis of RBC and platelet count

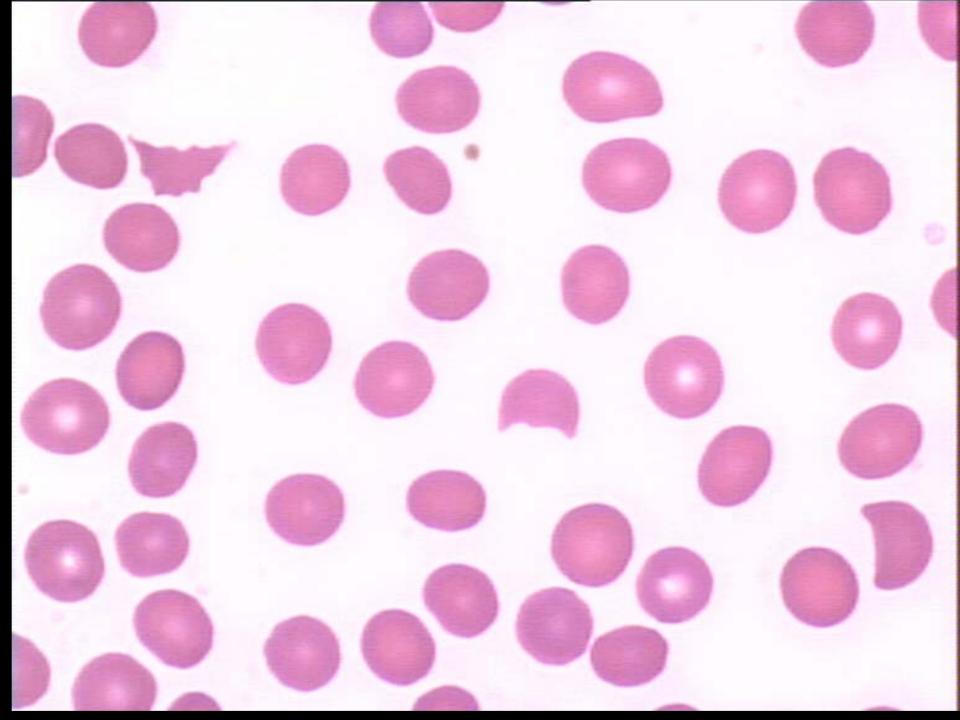
events with a volume smaller than 30 fL and with a refractive index greater than 1.4

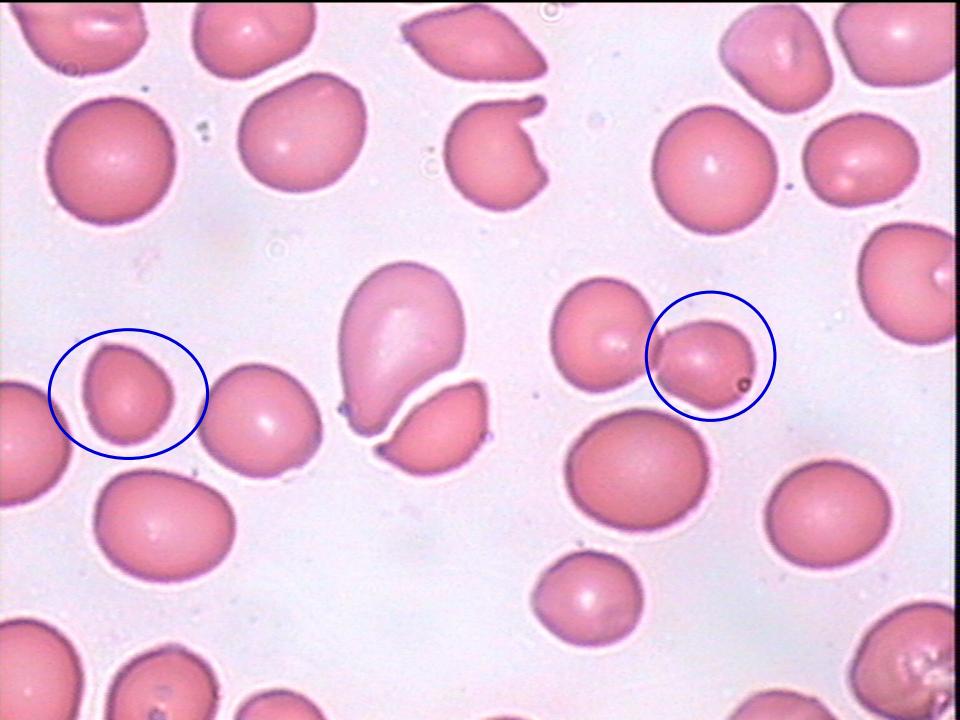
▶ frequence of events above the threshold of 10,000/µL

Run Screen - [CBCDiff_NRBC]			<u>_8×</u>
<u>O</u> pen <u>C</u> onfigure <u>H</u> ide <u>D</u> isplay C	f <u>A</u> rrange <u>Print</u> H <u>e</u> lp		
Header-WB Playback	Additional Platelet Param	eters Baso	Perox
SID 20060679	PDW H 72,6 * %		
Aspiration Date/Time 22/04/2005 19			
Sample Type PATIENT	MPC 23,9 g/dL		
Rack & Position 1 3 Cal Factors Stored	MPM 2,47 pg		
FOR LABORATORY USE ON		ells/µL	
<u></u>			
	Additional Routine Parameters RBC V	olume	
WBC H 29,61 x10 ^s cells/µL	%Blast Suspect 1,3		
RBC L 2,01 x10 ^e cells/µL	%Hyper 3,1		
HGB L 6,5 g/dL	%Hypo 5,6		
HCT L 20,2 %	%Macro 15,8 %Micro 3,1		
MCV H 100,4 fL	%Micro 3,1 RBC Fragments 0,02 x10 ^e cells/µL	RBC V/HC	PLT Scatter
MCH H 32,4 pg MCHC L 32,3 a/dL	RBC Ghosts 0,02 x10 ^e cells/µL RBC Ghosts 0,01 x10 ^e cells/µL		
MCHC L 32,3 g/dL CHCM 34,1 g/dL	Neut X 58,1		- 1999 - 1997 - 1998 - 1998 - 1998 - 1998 - 1998 - 1998 - 1998 - 1998 - 1998 - 1998 - 1998 - 1998 - 1998 - 1998
CHCIM 34,1 970L CH 33,8 pg	Neut Y 67,5	t Vol	
RDW H 23,7 %	MNx 14,0		1 A
HDW H 3,82 g/dL	MNy 13,5		$\{1, 2, 3\} \in \{1, 2\}$
PLT L 115 * x10 ³ cells/µL			1 1 1 1 1 1 1 3
MPV H 12.0 * fL	%PMN 71,2		1
p	Cellular HGB 6,9 g/dL		5 <i>5 7 / / /</i>
Routine WBC Differential			S. J. J. J. Summer State
Routine WBC Differential % #	NRBC		
WBC H 29,61 x10 ³ c	Legend:		
Neut H 76,4 H 22,63 x10° c	olistaned Events	phology Flags Baso Rate RBC Rate	NRBC
Lymph L 15,7 4,66 ×10° c	NRBC Gauss Fit		%NRBC
Mono 4,0 H 1,19 x10° c	NRBC Residual MIA		#NRBC
Eos 0,3 0,10 x10° c			WBC H 29,61
Baso 1,5 H 0,44 x10° c	ANI	VAR + HGB Trans Perox Rat	e WBCu 29,61
LUC 2.0 H 0.59 x10 ³ c	ells/µL G		%Histo NRBC 0,0
NRBC X10° c		GE PLT +	%Gaussian NRBC 0,5
LI 1,93			%BAROX NRBC 0,0
MPXI -7,3			%Residual NRBC 0,0
WBCP 31,75 x10 ^s c	ells/µL		Sample/System Flags

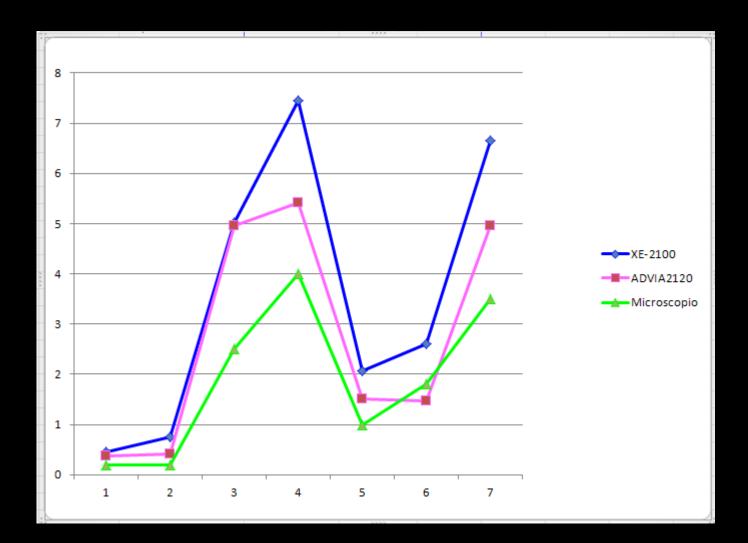

RBC Fragments	0,02	x10ª cells/µL
RBC Ghosts	0,01	x10° cells/µL

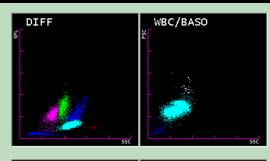

Automated FRC compared with visual count

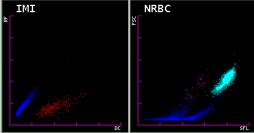

Automated screening for schistocytes with two hematology analyzers.

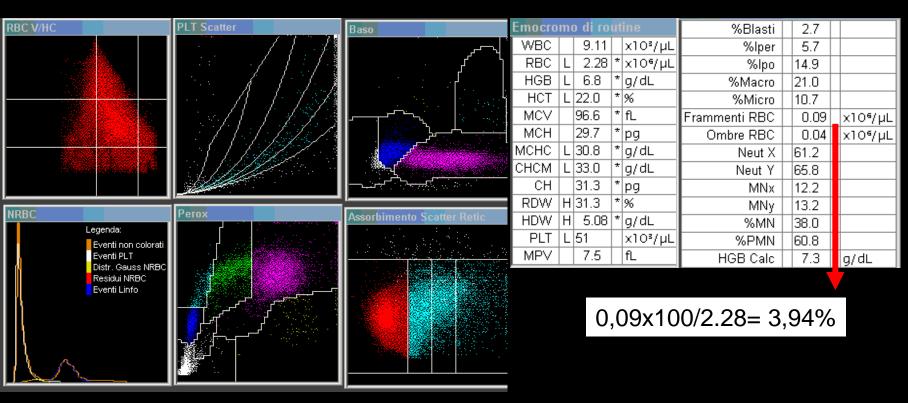

All the 150 samples were smeared and stained with MGG panoptical stain and evaluated by two independently.	expert observers	at microscope
We found a fully concordance between the reference method and the automated enumeration wit negative (Fig. 5 and 6).	h both the analyze	ers without any false
The range values of positive samples were as follow: reference method :0,1-2,3%. ADVIA 2120 method: 0,2-4,13%	Authors:	2005, ISLH
XE-2100 method: 0,05-8,39 %	M. Garzia, A	,
The overall correlation of the analyzers' count versus the reference method was as follows: y= 2,0943x + 0,4242, R^2 = 0,3098 for the XE-2100 method (Fig. 7) y= 1,0103x + 0,3109, R^2 = 0,4657 for the ADVIA 2120 method (Fig. 9)	E. Rossi, G. G. d'Onofric	Massini, S. Bellesi, o, G. Zini

Both analyzers showed a trend toward an overestimation of RBC fragment count, apparently due to the inclusion into the count of microspherocytes, when present (Fig. 8).




Follow- up




Main	Graph	WB	C/NRBC	RBC	/PLT Cu	mulati∖	/e	Q-Flags	Service	HPC	Research(W)	Research(R) Rese.
Items-					Extended	d RET				RET	•	RET-EXT
Param	. Dati		Unita'		Param.	Dati		Unita'		ESC .		2
RBC	2.25	-	10^6/ul		RET-He	36.9	*	pg				
RBC-0	2.13		10^6/ul		RBC-He	25.4	*	pg				
HGB	6.3		g/dL		D-He	11.5		pg				
НСТ	20.2		%		RET-Y	188.1	*	ch				
MCV	89.8		fL		RBC-Y	150.1	*	ch				
MCH	28.0		pg		IRF-Y	191.3	*	ch			and the second second	
MCHC	31.2		g/dL									
RDW-S			fL								SFL	SFL
RDW-C	V 35.0	+	%		Param.	Dati		Unita'	1	PLT	-0	NRBC
PLT			10^3/ul			0.2466	_	10/6/uL		N N	A DESCRIPTION OF THE PARTY OF T	FS0
PLT-I			10^3/ul					10/0/UL				-
PLT-0	51		10^3/ul		FRC%	10.96		/0				
PDW			fL		Items						Production of the second se	
MPV			fL									
P-LCR			%		Param.	Dati		Unita'		30.0		State of the state
PCT			%		NRBC#	0.08		10/3/uL				
RET#	0.5036		10^6/ul	L	NRBC%	0.9		/100WBC			SFL	
RET%	22.38		%	1							SFL	SFL
IRF	10.4		%		Flag(s)- RBC/RET			PLT		RBC	A1 11 11	
LFR	89.6		%		Fragme			PLI PLT Ab	n Dst 🔺		Λ	
MFR	7.1		%		RET Ab			Thromb			$/ \sum_{i=1}^{n} i_i = 1$	
HFR	3.3	*	%		Reticu							
					Aniso		-]	v			40fL
											23011	

WBC					٢E	xter	ndec	l Diff	er	e	ntia
Param.	Dati		Unita	_		Para	am.	Dati			Un
WBC &	8.84		10^3/u	L		IG#		0.3	7		10/
NRBC+W	8.92		10/3/u	L		NEUT	г#&	5.0	7		10/
NRBC						LYMF		1.6			10/
				_		MONG	D#	1.6		+	10/
Param.	Dati		Unita	_		EO#		0.0	4		10/
NRBC#	0.08	I I	10/3/u			BASC	D#	0.0	2		10/
NRBC%	0.9		/100wB	С		OTHE	ER#	0.0	0		10/
HPC are	a					Para	am.	Dati			Un
Param.	Dati		Unita	-		IG%		4.			%
Area#	0.006		10/3/u	L		NEUT		57.	-		%
Area%	0.07		%			LYMF		19.			%
1						MONG		18.		+	%
Flag(s)						E0%		0.			%
Mono+			-			BASC		0.			%
IG Pre	sent		_			OTHE	ER%	0.	0		%
									_	_	
				Рa	r	am.	D	ati			Un
				IΡ	F			12.4		2	%
				н-	I	PF		5.1		2	%
				IΡ	F	#		6.3			10/
			-	PL	Т	-×		24.8			ch

E	ixter	ndea	d Diff	e	Extended Differential										
	Para	am.	Dati			Unita'									
	IG#		0.3	7		10/3/uL									
	NEUT	г#&	5.0	7		10^3/uL									
	LYMF	°#&	1.6	9		10^3/uL									
	MONG	D#	1.6	5	+	10^3/uL									
l	EO#		0.0	4		10^3/uL									
l	BASC	D#	0.0	2		10^3/uL									
J	OTHE	ER#	0.0	0		10/3/uL									
	Para	am.	Dati			Unita'									
	IG%		4.	2		%									
	NEUT	г%&	57.	3		%									
	LYMF	°%&	19.	1		%									
	MONG	0%	18.	7	+	%									
	E0%		0.	5		%									
	BASC	0%	0.	2		%									
ļ	OTHE	ER%	0.	0		%									
1	am.	D	ati			Unita'									
-			12.4			%									
E١	PF		5.1			%									
-	#		6.3			10/3/uL									
			74 8			,									

Formula WBC di routine							Retic							
		%		#		Ш			%			#		
WBC				9.11	x10³/µL	Ш	RBC neg		63.61			13993		
Neutro		63.6		5.80	x10³/µL	Ш	Retic	Η	36.39	*	Н	830.5	*	x10º/L
Linfo	L	18.6		1.70	x10³/µL	Ш	Retic L		59.24			4742		
Mono	Н	13.0	Η	1.19	x10³/µL	Ш	Retic M		29.23			2340		
Eos		1.4		0.12	x10³/µL	Ш	Retic H		11.53			923		
Baso		0.3		0.03	x10³/µL	Ш	IRF-H		11.53					
LUC		3.1		0.28	x10³/µL	Ш	IRF-M+H		40.76					
NRBC					x10º/L	Ш	Acquired Cells Retic					25231	Γ	
Indice Lobularità				2.09		Iľ	Analyzed Cells Retic					22293		
MPXI				-4.8		Ш	Gated Cells Retic					21998		
WBCP				8.28	x10³/µL	l	Retic Count					8005		

Allarmi morfolog										
Micro	+++									
Macro	+++									
IPOCROMIA	+++									
IPERCROMIA	+									
ANISO	+++									
HC VAR	+++									

Retic o	li r	outine	9				
		%			#		
Retic	Н	36.39	*	Н	830.5	*	x10º/L
CHr				Н	34.9	*	pg
CHm					27.5		pg

© 2012 Blackwell Publishing Ltd, Int. Inl. Lab. Hem.

Fragmented red blood cells automated measurement is a useful parameter to exclude schistocytes on the blood film J.-F. LESESVE^{*}, V. ASNAFI[†], F. BRAUN[‡], G. ZINI^{§,¶}

Table 1. Reference range for fragmented red cells (FRC)										
			5.		Fragmented red cells (%)					
Reference	Center	Analyzer	No. of tests	Population	Mean	Min-max	SD	95% CI	Median	
Lesesve 2004	Nancy, Fr	ADVIA 120	69	Adults		< 0.25				
Lesesve 2007	Nancy, Fr	ADVIA 120	120	Adults	0.258	0.18-0.49	0.089	0.213-0.257	0.22	
This study	Nancy, Fr	ADVIA 2120	1 984	Adults	0.247	0.15-0.48	0.08		0.23	
This study	Roma, It	ADVIA 2120	80	Adults	0.30	0.17-0.48	0.13		0.34	
This study	Roma, It	ADVIA 2120	10	Preterm newborns	0.80	0.19–1.24				
Jiang 2001	Kobe, Jpn	XE-2100	762	Adults		0.03-0.56				
Abe 2009	Mie, Jpn	XE-2100	120	Adults				0-0.205	0.04	
This study	Roma, It	XE-2100	146	Adults	0.69	0.2-2.83	0.74		0.33	
This study	Paris, Fr	XE-2100	1405	Adults		< 0.50				
This study	Nancy, Fr	XE-2100	232	Adults	0.36	0.05-0.65	0.125	0.31-0.37	0.34	
This study	Thionville, Fr	XE-5000	111	Adults	0.33	0-2.96	0.148		1.1	
This study	Roma, It	XE-2100	17	Preterm newborns	3.44	0.12-11.65				

Results: Reference range for FRC was <0.3% for the ADVIA and <0.5% for the XE-2100. The presence of FRC below a threshold determined at 1% (ADVIA and XE-2100) had a negative PV close to 100% to exclude the presence of schistocyte on the blood smear, but in relationship with a poor PV value.

Counter	Question assessed	Number and type of patients	Center	FRC %	Sensitivity	Specificity	Positive predictive value	Negative predictive value
ADVIA	Occurrence	69, post	Nancy	0.25	1	0.734	0.227	1
2120	of TAM	BMT	1	1	0.80	0.953	0.571	0.984
	Presence	131,	Nancy	0.25	1	0.171	0.23	1
	of schistocyte on the blood smear/TAM	unselected	-	1	0.885	0.876	0.639	0.968
	Presence of schistocyte on the blood smear	100, unselected	Roma	0.2	0.918	0.576		
XE- 2100	Presence of schistocyte on the blood smear	300, unselected	Paris	0.5	0.925	0.457	0.268	0.966
	Presence of schistocyte on the blood smear	574, suspicion of TAM	Paris	0.5	0.952			0.987
	Presence of schistocyte on the blood smear	831, unselected	Paris	0.5	0.967			0.993
	Presence of schistocyte on the blood smear	100, unselected	Roma	0.2	0.959	0.695		
	Occurrence of TAM	230	Mie, Jpn	1.2	0.9	0.96	0.9	0.9

The Official journal of the International Society for Laboratory Hernatology

ORIGINAL ARTICLE

INTERNATIONAL JOURNAL OF LABORATORY HEMATOLOGY

ICSH recommendations for identification, diagnostic value, and quantitation of schistocytes

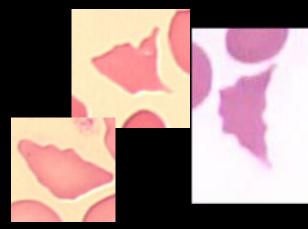
G. ZINI*, G. D'ONOFRIO[†], C. BRIGGS[‡], W. ERBER[§], J. M. JOU[¶], S. H. LEE**, S. MCFADDEN^{††}, J. L. VIVES-CORRONS[¶], N. YUTAKA^{‡‡}, J. F. LESESVE^{§§}

Int J Lab Hematol. 2011 Nov 15

International Council for Standardization in Haematology

Consensus on morphological description/identification (I)

Bitten erythrocyte:


Normal size, shape irregular with a defective amputated zone

Schistocyte (keratocyte):

Helmet shape: decreased size (surface/area), irregular shape with a defective amputated zone highlighted by a rectilinear border ending with usually 2 (1 or 3 possible) angulated spicules. Pale central zone is not observed.

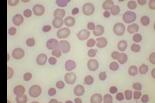
Schistocyte

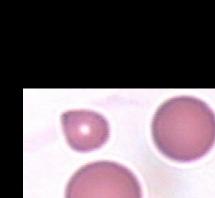
Triangular shape: reduced size, irregular shape with a defective amputated zone highlighted by a rectilinear sometime spiculated border, ending with 2 angulated spicules. Pale central zone is not observed.

Consensus on morphological description/identification

(||)

Fragment


Small/very small size, highly irregular shape


Microspherocytes

Small size, round shape, hyperdensity (increased staining)

Irregularly contracted cells

Small size, hyperdensity, irregular outline sometimes with small protrusions and Heinz bodies

The Official journal of the International Society for Laboratory Hernatology

ORIGINAL ARTICLE

INTERNATIONAL JOURNAL OF LABORATORY HEMATOLOGY

ICSH recommendations for identification, diagnostic value, and quantitation of schistocytes

G. ZINI*, G. D'ONOFRIO[†], C. BRIGGS[‡], W. ERBER[§], J. M. JOU[¶], S. H. LEE**, S. MCFADDEN^{††}, J. L. VIVES-CORRONS[¶], N. YUTAKA^{‡‡}, J. F. LESESVE^{§§}

Table 1. International Council for Standardization in Haematology recommendations for schistocyte counting

- Schistocytes should be evaluated on peripheral blood smears using an optical microscope at medium magnification and estimated as a percentage after counting at least 1000 red blood cells
- A schistocyte count should be requested and carried out when a diagnosis of thrombotic microangiopathies caused by red cell mechanical damage is suspected, usually in patients with thrombocytopenia
- 3. Schistocytes should be identified by specific positive morphological criteria. Schistocytes are always smaller than intact red cells and can have the shape of fragments with sharp angles and straight borders, small crescents, helmet cells, keratocytes, or microspherocytes*
- A schistocyte count should be considered clinically meaningful if schistocytes represent the main morphological red blood cells abnormality in the smear (other than signs of erythropoietic regeneration)
- A robust morphological indication for the diagnosis of thrombotic microangiopathic anemia in adults should be recognized when the percentage of schistocytes is above 1%
- Fragmented red cell enumeration by automated blood cell counters should be considered a useful complement to microscopic evaluation, as it provides rapid results with a high predictive value of negative samples. A microscope check is needed for positive and macrocytic samples[†]

*Microspherocytes only in the presence of other mentioned RBC shapes. †Macrocytic samples are at risk of underestimation or absence of flag ('false-negative' test).

Int J Lab Hematol. 2011 Nov 15

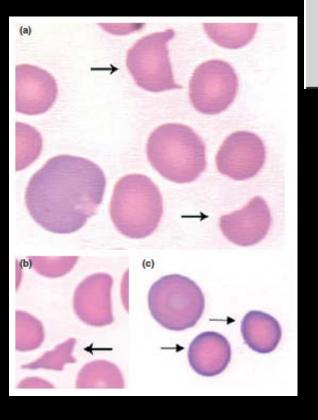
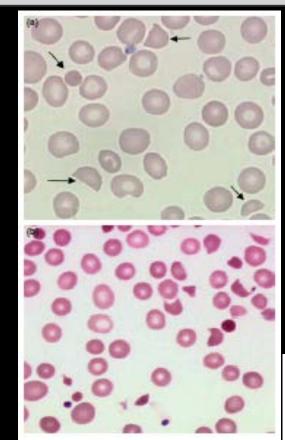



Figure 1. Typical shapes for specific identification of schistocytes. (a) keratocyte (upper arrow) and helmet cell (lower arrow), close to a polychromatophilic erythrocyte in the left lower corner; (b) a triangle schistocyte (arrow) with a helmet cell on the upper right; (c) two microspherocytes (arrows); they are derived, in a context of thrombotic microangiopathic anemia, from schistocytes.

Figure 2. Peripheral blood smear from a case of thrombotic thrombocytopenic purpura. (a) arrows indicate a helmet cells (lower left), a microspherocyte (upper left), a keratocyte (center top), and a microcrescent (lower right angle); (b)morphological abnormalities include microspherocytes, keratocytes, helmet cell, and several crescent and triangular schistocytes.

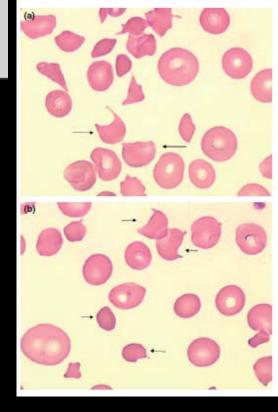
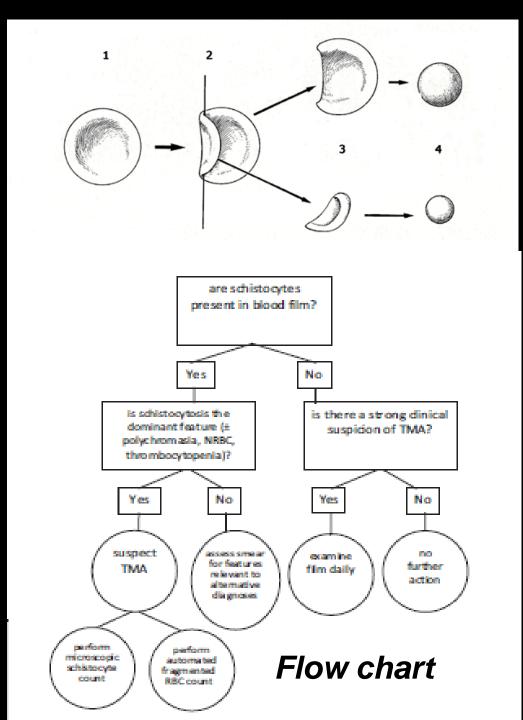
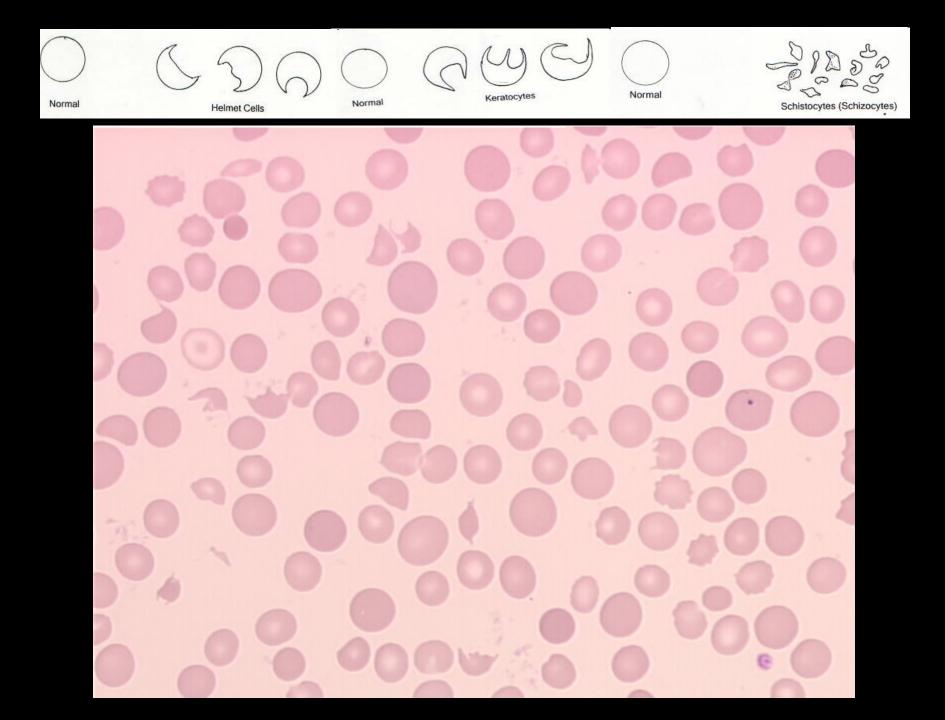




Figure 3. Peripheral blood smear from a case of posttransplant thrombotic microangiopathic anemia. (a) a keratocyte (left arrow), a helmet cell (right arrow), and several hyperchromatic triangular erythrocytes are present; (b) two keratocytes (upper arrow) and two deformed microspherocytes (lower arrow) are present, together with more bizarre red cell fragments.

BMC Hematol. 2015 Dec 1;15:16. doi: 10.1186/s12878-015-0036-2. eCollection 2015.

Therapeutic dilemma in the management of a patient with the clinical picture of TTP and severe B12 deficiency. <u>Walter K¹, Vaughn J², Martin D³</u>.

Table 1

Characteristics of pseudo-TTP patients individually reported in the literature and averages from a case series

Case	Year	Sex	Age	WBC (×10 ⁹ /L)	HCT	HGB	PLT (nadir) (×10 ⁹ /L)	LDH (IU/L)	MCV (fL)	Retic × 10 ⁹ /L	TPE	Ref
1	1998	F	38	3.6		39	260	5700	102	20	NO	[22]
2	1999	F	68	3.2		32	110	7900	112	34	YES	[23]
3	2003	Μ	38	2.2		45	50	19,384	90	10	YES	[24]
4	2008	Μ	48	6.3		50	380	8988	80	13	YES	[14]
5	2009	Μ	52	3.6	27		960	4604	107	31	NO	[25]
6	2011	F	31	4.2		57	420	4579	110	NR	YES	[26]
Mean	alues fro	om sev	en pati	ients								
Series			72	3.4		42	73	7310	111	13		[10]

Arch Med Res. 2015 Aug;46(6):479-83. doi: 10.1016/j.arcmed.2015.07.003. Epub 2015 Jul 26.

Morphological changes of red blood cells in peripheral blood smear of patients with pregnancy-related hypertensive disorders.

Hernández Hernández JD¹, Villaseñor OR¹, Del Rio Alvarado J¹, Lucach RO¹, Zárate A², Saucedo R², Hernández-Valencia M³.

RESULTS: A total of 119 samples were analyzed; 74% showed abnormal morphology of erythrocytes and the most frequent abnormality was the presence of schistocytes in up to 39% of samples. Descriptive analysis showed a degree of association to independent variables with Cramer's V = 0.41 value (p <0.05).

CONCLUSIONS: A high percentage of patients with hypertensive disorders of pregnancy show some morphologic alterations of erythrocytes in peripheral blood smear.

Int J Lab Hematol. 2015 Oct;37(5):588-96. doi: 10.1111/ijlh.12363. Epub 2015 Apr 28.

Evaluation of schistocyte analysis by a novel automated digital cell morphology application.

Hervent AS¹, Godefroid M¹, Cauwelier B¹, Billiet J¹, Emmerechts J¹.

RESULTS: Within-run, between-run and between-observer coefficients of variation were lower when counted with the CellaVision compared to the manual microscopic count. The very high sensitivity but rather poor specificity implicates the need for reclassification by the operator, following automated analysis. After reclassification, method comparison studies revealed good agreement with the manual microscopic method, with however slightly higher values of schistocytes for the automated analysis.

CONCLUSION: The CellaVision Advanced RBC Software Application provides a sensitive and reproducible measurement of schistocytes in peripheral blood, but still requires manual revision. Furthermore, it is an easy-to-use software and an excellent teaching tool that might contribute to standardization in the investigation of schistocyte-related conditions.

